研究生: |
林煒程 Lin, Wei-Cheng |
---|---|
論文名稱: |
以多變量樹狀模型評價美式價差選擇權 A Lattice Method for Pricing American Spread Options with Multiple Stochastic State Variables |
指導教授: |
索樂晴
So, Leh-Chyan |
口試委員: |
林哲群
Lin, Che-Chun 蔡錦堂 Tsay, Jiin-Tarng 楊屯山 Yang, Twan-Shan |
學位類別: |
碩士 Master |
系所名稱: |
科技管理學院 - 計量財務金融學系 Department of Quantitative Finance |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 18 |
中文關鍵詞: | 樹狀模型 、美式選擇權 、價差選擇權 |
外文關鍵詞: | Lattice method, American options, Spread options |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以Russo和Staino (2018)的模型為基礎,建立價差選擇權的樹狀訂價模型,並與最小平方蒙地卡羅法 (Longstaff和Schwartz, 2001)進行比較。模型的假設上,樹狀模型對資產價格的動態過程有較多限制,但已足以應用於多種場合。計算速度方面,本文讓兩模型針對54種美式價差賣權訂價。數值結果顯示樹狀訂價模型能在短時間內收斂,且計算結果精確。此外,針對不同參數的賣權,亦可給出精確的結果。
We present a lattice pricing method for spread options based on the model of Russo and Staino (2018). This method is flexible, fast and accurate. It could deal with different kinds of asset price dynamics. It is easy to add extra risk factors to this model. To assess lattice model, we compare it with Least Squares Monte Carlo by computing American spread put option prices. The results indicate that lattice method converges quickly. Besides, the answers given by lattice method are close to the benchmark. The numerical experiments show the efficiency and accuracy of lattice method.
1. Boyle, P. A Lattice Framework for Option Pricing with Two State Variables. Journal of Financial and Quantitative Analysis, 23 (1988), Pages 1-12
2. Carmona, R. and Durrleman, V. Pricing and Hedging Spread Options. SIAM Review, 45 (2003), Pages 627-685
3. Costabile, M. and Massabó, I. A Simplified Approach to Approximate Diffusion Processes Widely Used in Finance. The Journal of Derivatives, 17 (2010), Pages 65-85
4. Costabile, M., Massabó, I., and Russo, E. A Forward Shooting Grid Method for Option Pricing with Stochastic Volatility. The Journal of Derivatives, 20 (2012), Pages 67-78
5. Gibson, R. and Schwartz, E. Stochastic Convenience Yield and the Pricing of Oil Contingent Claims. The Journal of Finance, 45 (1990), Pages 959-976
6. Hurd, T. and Zhou, Z. A Fourier Transform Method for Spread Option Pricing. SIAM Journal on Financial Mathematics, 1 (2010), Pages 142-157
7. Lau, C.S. and Lo, C.F. The pricing of basket-spread options. Quantitative Finance, 14 (2014), Pages 1971-1982
8. Li, M., Deng, S.J., and Zhou, J. Closed-Form Approximations for Spread Option Prices and Greeks. The Journal of Derivatives, 15 (2008), Pages 58-80
9. Li, M., Zhou, J., and Deng, S.J. Multi-asset spread option pricing and hedging. Quantitative Finance, 10 (2010), Pages 305-324
10. Longstaff, F. and Schwartz, E. Valuing American options by simulation: a simple least-square approach. The Review of Financial Studies, 14 (2001), Pages 113-147
11. Margrabe, W. The Value of an Option to Exchange One Asset for Another. The Journal of Finance 33 (1978), Pages 177-186.
12. Medvedev, A. and Scaillet, O. Pricing American options under stochastic volatility and stochastic interest rates. Journal of Financial Economics, 98 (2010), Pages 145-159
13. Pearson, N. An Efficient Approach for Pricing Spread Options. The Journal of Derivatives, 3 (1995), Pages 76-91
14. Poitras, G. Spread options, exchange options, and arithmetic Brownian motion. Journal of Futures Markets, 18 (1998), Pages 487-517
15. Russo, E. and Staino, A. A Flexible Lattice Model for Pricing Contingent Claims under Multiple Risk Factors. The Journal of Derivatives, 26 (2018), Pages 27-44
16. Zhao, H., Zhao, Z., Chatterjee, R., Lonon, T. and Florescu, I. Pricing Variance, Gamma, and Corridor Swaps Using Multinomial Trees. The Journal of Derivatives, 25 (2017), Pages 7-21