簡易檢索 / 詳目顯示

研究生: 林佑穎
Lin, Yu-Ying
論文名稱: 用於循環癌細胞早期檢測之二維細胞自組裝陣列螢光辨識系統
A Two-Dimensional Fluorescent Cell Array System for the Early Detection of Circulating Tumor Cells
指導教授: 饒達仁
Yao, Da-Jeng
曾繁根
Tseng, Fan-Gang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 69
中文關鍵詞: 自組裝生醫晶片細胞檢測
外文關鍵詞: Self-assembled monolayer, Biochip, Cells-identification
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文計畫開發一細胞檢測晶片,將傳統流式細胞儀的一維線性判讀改為二維平面檢測,如此可大幅提升檢測效率。二維平面檢測係利用聚苯乙烯球的自組裝特性來預測細胞也能有相同的自組裝排列,利用水流作用力帶動細胞的原理使細胞產生緊密整齊的單層排列,如此可輕易地在螢光顯微鏡下觀察細胞的二維陣列,以利判讀癌細胞,且因是單層,不會導致訊號遮蔽的問題。
    然而在癌症的檢測上需要立即性,若是以液體蒸發方式讓細胞產生自組裝則需時太久,本研究利用Poly(acrylic acid) partial sodium salt的吸水特性與Polyethylene terephthalate 膜的接合開發一平台,使細胞懸浮液中的液體能快速地在此平台上被吸收,使細胞產生自組裝。本文利用此平台作幾項測試,第一項為細胞產生自組裝的測試,本研究成功地找到一產生自組裝的細胞濃度,能夠使細胞緊密的單層排列,似聚苯乙烯球自組裝排列時的六方最密堆積現象;第二項為癌細胞比例判讀的測試,讓細胞染上不同螢光,作為癌細胞與正常細胞的區別,待細胞懸浮液在平台上產生自組裝排列後,由顯微鏡觀測計數癌細胞的比例是否與理想值相符,本實驗數值都與理想值十分接近,在95%信心水準之下誤差值為5.58%,且最低可辨認之癌細胞於正常細胞下之濃度達1/10,000。
    此二維檢測平台的開發未來將與本計畫中前段的三維介電泳分離系統結合,除此之外也可應用在其他需要將細胞作平面觀察的實驗上,用途十分廣泛。


    誌謝 摘要 i Abstract ii 目錄 iii 表目錄 iv 圖目錄 v 第一章 緒論 1 1.1 前言 1 1.2 研究目標 2 第二章 文獻回顧 4 2.1 細胞篩選工具 4 2.1.1 標定(Labeling) 4 2.1.2 非標定(Non-labeling) 7 第三章 實驗設計 13 3.1 三維介電泳(DEP)細胞分選系統與二維免疫螢光檢測系統 13 3.2 二維免疫螢光檢測之設計 14 3.2.1 細胞排列目標 14 3.2.2 細胞排列方法比較 15 3.2.3 奈米球(colloidal particle)的自組裝 21 3.2.4 白血球細胞自組裝排列 33 3.3 實驗材料與方法 34 3.3.1 實驗材料 34 3.3.2 實驗儀器 43 3.4 實驗準備 48 3.4.1 細胞懸浮液製備 48 3.4.2 平台製作 48 3.4.3 平台驗證 52 第四章 實驗結果與討論 55 4.1 細胞排列 55 4.1.1 不同細胞濃度之下的流動現象觀察 55 4.1.2 細胞排列與濃度關係 57 4.1.3 與傳統細胞排列方法比較 59 4.2 細胞辨別 60 4.2.1不同螢光波段之細胞辨別 60 4.2.2 不同種類之細胞辨別 64 第五章 結論 66 第六章 參考文獻 67

    [1] V. I. Furdui and D. J. Harrison, "Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems," Lab Chip, vol. 4, pp. 614-18, 2004.
    [2] H. Mohamed, L. D. McCurdy, D. H. Szarowski, S. Duva, J. N. Turner, and M. Caggana, "Development of a Rare Cell Fractionation Device: Application for Cancer Detection," IEEE Transactions on Nanobioscience, vol. 3, pp. 251-256, 2004.
    [3] B. S. Cho, T. G. Schuster, X. Zhu, D. Chang, G. D. Smith, and S. Takayama, "Passively Driven Integrated Microfluidic System for Separation of Motile Sperm," Anal. Chem., vol. 75, pp. 1671-1675, 2003.
    [4] R. A. Hoffman, T. S. Johnson, and W. B. Britt, "Flow Cytometric Electronic Direct Current Volume and Radiofrequency Impedance Measurements of Single Cells and Particles," Cytometry, vol. 1, pp. 377-384, 1981.
    [5] R. A. Hoffman and W. B. Britt, "Flow-System Measurement of Cell Impedance Properties," The Journal of Histochemistry and Cytometry, vol. 27, pp. 234-240, 1979.
    [6] D. Holmes, D. Pettigrew, C. H. Reccius, J. D. Gwyer, C. Berkel, J. Holloway, D. E. Davies, and H. Morgan, "Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry," Lab Chip, vol. 9, pp. 2881-2889, 2009.
    [7] S. Masuda, M. Washizu, and I. Kawabata, "Movement of Blood Cells in Liquid bu Nonuniform Traveling Field," IEEE Transactions on Nanobioscience, vol. 24, pp. 217-223, 1988.
    [8] G. H. Markx and R. Pethig, "Dielectrophoretic Seperation of Cells: Continuous Seperation," Biotechnol. Bioeng., vol. 45, pp. 337-343, 1995.
    [9] I. Doh and Y.-H. Cho, "A continuous cell separation chip using hydrodynamic
    dielectrophoresis (DEP) process," Sens. Actuators. A, vol. 121, pp. 59-65, 2005.
    [10] Y. Li, C. Dalton, H. J. Crabtree, G. Nilsson, and K. V. I. S. Kaler, "Continuous dielectrophoretic cell seperation microfluidic device," Lab Chip, vol. 7, pp. 239-248, 2007.
    [11] S. Choi and J.-K. Park, "Microfluidic system for dielectrophoretic seoeration based on a trapezoidal electrode array," Lab Chip, vol. 5, pp. 1161-1167, 2005.
    [12] J. T. Lin and J. T. Yeow, "Enhancing dielectrophoresis effect through novel electrode geometry," Biomed. Microdevices, vol. 9, pp. 823-831, 2007.
    [13] E. B. Cummings, "Streaming dielectrophoresis for continuous-flow microfluidic devices," IEEE Eng. Med. Biol. Mag., vol. 22, pp. 75-84, 2003.
    [14] M. Durr, J. Kentsch, T. Muller, T. Schnelle, and M. Stelzle, "Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis," Electrophoresis, vol. 24, pp. 722-731, 2003.
    [15] K-H. Han and A. B. Frazier, "Lateral-driven continuous dielectrophoretic microseparators for blood cells suspended in a highly conductive medium," Lab Chip, vol. 8, pp. 1079-1086, 2008.
    [16] K. Leong, A. K. Boardman, H. Ma, and A. K.-Y. Jen, "Single-Cell Patterning and Adhesion on Chemically Engineered Poly(dimethylsiloxane) Surface," Langmuir, vol. 25, pp. 4615-4620, 2009.
    [17] J. Voldman, M. L. Gray, M. Toner, and M. A. Schmidt, "A Microfabrication-Based Dynamic Array Cytometer," Analytical Chemistry, vol. 74, pp. 3984-3990, 2002.
    [18] D. D. Carlo, N. Aghdam, and L. P. Lee, "Single-Cell Enzyme Concentrations, Kinetics, and Inhibition Analysis Using High Density Hydrodynamic Cell Isolation Arrays," Analytical Chemistry, vol. 78, pp. 4925-4930, 2006.
    [19] J. R. Rettig and A. Folch, "Large-Scale Single-Cell Trapping And Imaging Using Microwell Arrays," Analytical Chemistry, vol. 77, pp. 5628-5634, 2005.
    [20] M. Deutsch, A. Deutsch, O. Shirihai, I. Hurevich, E. Afrimzon, Y. Shafran, and N. Zurgil, "A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells," Lab on a Chip, vol. 995-1000, 2006.
    [21] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of Formation of 2-Dimensional Crystals from Latex-Particles on Substrates," Langmuir, vol. 8, pp. 3183-3190, Dec 1992.
    [22] H. Kobayashi, N. Moronuki, and A. Kaneko, "Self-assembly of fine particles applied to the production of antireflective surfaces," International Journal of Precision Engineering and Manufacturing, vol. 9, pp. 25-29, Jan 2008.
    [23] T. M. Blattler, A. Binkert, M. Zimmermann, M. Textor, J. Voros, and E. Reimhult, "From particle self-assembly to functionalized sub-micron protein patterns," Nanotechnology, vol. 19, pp. -, Feb 20 2008.
    [24] R. Aveyard, J. H. Clint, D. Nees, and V. N. Paunov, "Compression and structure of monolayers of charged latex particles at air/water and octane/water interfaces," Langmuir, vol. 16, pp. 1969-1979, Feb 2000.
    [25] T. S. Horozov, R. Aveyard, J. H. Clint, and B. P. Binks, "Order-disorder transition in monolayers of modified monodisperse silica particles at the octane-water interface," Langmuir, vol. 19, pp. 2822-2829, Apr 1 2003.
    [26] F. Pan, J. Y. Zhang, C. Cai, and T. M. Wang, "Rapid fabrication of large-area colloidal crystal monolayers by a vortical surface method," Langmuir, vol. 22, pp. 7101-7104, Aug 15 2006.
    [27] J. Aizenberg, P. V. Braun, and P. Wiltzius, "Patterned colloidal deposition controlled by electrostatic and capillary forces," Physical Review Letters, vol. 84, pp. 2997-3000, Mar 27 2000.
    [28] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, "Directed self-assembly of spherical particles on patterned electrodes by an applied electric field," Advanced Materials, vol. 17, pp. 1507-1511, Jun 17 2005.
    [29] R. C. Hayward, D. A. Saville, and I. A. Aksay, "Electrophoretic assembly of colloidal crystals with optically tunable micropatterns," Nature, vol. 404, pp. 56-59, Mar 2 2000.
    [30] Y. D. Yin, Y. Lu, and Y. N. Xia, "A self-assembly approach to the formation of asymmetric dimers from monodispersed spherical colloids," Journal of the American Chemical Society, vol. 123, pp. 771-772, Jan 31 2001.
    [31] Y. N. Xia, Y. D. Yin, Y. Lu, and J. McLellan, "Template-assisted self-assembly of spherical colloids into complex and controllable structures," Advanced Functional Materials, vol. 13, pp. 907-918, Dec 2003.
    [32] D. Y. Wang and H. Mohwald, "Rapid fabrication of binary colloidal crystals by stepwise spin-coating," Advanced Materials, vol. 16, pp. 244-247, Feb 3 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE