簡易檢索 / 詳目顯示

研究生: 李捷
Lee, Chieh
論文名稱: 使用模糊影像顏色調色盤進行影像分割方法
Image Segmentation Using Color Palette based on Blurred Image
指導教授: 張隆紋
Chang, Long Wen
口試委員: 陳煥宗
Chen, Hwann Tzong
陳永昌
Chen, Yung Chang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 49
中文關鍵詞: 影像分割調色盤模糊影像Berkeley影像分割資料庫
外文關鍵詞: Image segmentation, Palette, Blurred image, Berkeley segmentation database
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在影像切割(image segmentation)中若是使用調色盤方式處理可以有效的減少處理複雜度,而我們做切割的目標是希望可以找出人類所能識別的區域。在本篇論文中,我們提出了一個不同於原始調色盤處理的影像切割方法可以有效的提升效果。
    在我們的方法中,我們使用了模糊影像做為找出影像中主要區域顏色的線索,藉由找出這些顏色來當作調色盤上的顏色並對影像重新上色,最後使用我們專門的優化程序來對結果進行修正與優化。我們所提出的方法在自然影像的分割結果上都可以得到相當不錯的結果。


    Using color palette to solve the image segmentation problem can reduce the image color complexity and the difficulty of the computation efficiency, the main challenges in the work are selecting the representative color of the palette and how to refine the result. In our color palette method (CPB) we accept the color information from the blurred image which is different from contour-guide color palette (CCP). Using mean-shift (MS) clustering to find out the key regions’ color of the image and treat these color as representative color of the palette. We use the palette to repaint the whole image and followed by the segments refinement to improve the system’s result. The refinement includes two processes: 1. Segments redefinition which refers the image’s strong edge to split and redefine the region, 2. Region merging includes three steps “strong edge category”,” color category” and the “micro region merging”, In our refinement we not only consider the color space restriction but also add the contour clue. In this way we can easily solve the common problem in image segmentation. The performances of CPB are compared and analyzed with the CCP which also utilize color palette to solve the segmentation problems. We use Berkeley Segmentation Dataset for image segmentation test. Furthermore we use Microsoft Research Asia dataset to test our result in figure-ground segmentation.

    Chapter 1 Introduction 6 Chapter 2 Related work 8 Chapter 3 Proposed Method 10 3.1 System overview 10 3.2 Blur image and palette generation 11 3.3 Image repaint 12 3.4 Segments refinement 13 3.4.1 Segments redefinition 14 3.4.2 Region merging 18 Chapter 4 Experimental result 23 Chapter 5 Conclusions 47 Reference 48

    [1] Z. Li, X.-M. Wu, and S.-F. Chang, "Segmentation using superpixels: A bipartite graph partitioning approach," in IEEE Conference on Computer Vision and Pattern Recognition, June 2012
    [2] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua and S. Ssstrunk, "Slic superpixels compared to state-of-the-art superpixel methods", IEEE Trans. Pattern Anal. Mach. Intell., pp. 2274-2282, 2012
    [3] Xiang Fu, Chien Yi Wang, Chen Chen, Changhu Wnang, C.-C. Jay Kuo, "robust image segmentation using contour-guided color palettes" in IEEE International Conference on Computer Vision (ICCV), Dec 2015
    [4] D. Comaniciu and P. Meer, "Mean Shift: A robust approach toward feature space analysis", IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, 2002
    [5] D. Martin, C. Fowlkes, D. Tal and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics",ICCV'01, pp. 416-423, 2001
    [6] V. Bruce, M. A. Georgeson and P. R. Green, Visual Perception: Physiology, Psychology and Ecology, 2003, Psychology Press.
    [7] J. J. Gibson, The perception of the visual world, 1950, Houghton Mifflin
    [8] J. Shi and J. Malik, "Normalized cuts and image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, 2000
    [9] P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation", Int. J. Comput. Vision, vol. 59, no. 2, pp. 167-181, 2004
    [10] T. H. Kim, K. M. Lee and S. U. Lee, "Learning full pairwise affinities for spectral segmentation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1690-1703, 2013
    [11] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, "Contour detection and hierarchical image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 898-916, 2011
    [12] M. Donoser, M. Urschler, M. Hirzer and H. Bischof, "Saliency driven total variation segmentation", ICCV'09, pp. 817-824, 2009
    [13] X. Muñoz, J. Freixenet, X. Cufí and J. Martí, "Strategies for image segmentation combining region and boundary information", Pattern Recogn. Lett., vol. 24, no. 13, pp. 375-392, 2003
    [14] J. Freixenet, X. Muñoz, D. Raba, J. Martí and X. Cufí, "Yet another survey on image segmentation: Region and boundary information integration", ECCV'02, pp. 408-422, 2002
    [15] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images", ICCV '98, pp. 839-846, 1998
    [16] P. Dollr and C. L. Zitnick, "Structured forests for fast edge detection", ICCV'13, pp. 1841-1848, 2013
    [17] P. Arbelaez, M. Maire, C. Fowlkes and J. Malik, "Contour detection and hierarchical image segmentation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 5, pp. 898-916, 2011
    [18] R. Unnikrishnan, C. Pantofaru and M. Hebert, "Toward objective evaluation of image segmentation algorithms", IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 929-944, 2007
    [19] M. Meilä, "Comparing Clusterings: An axiomatic view", ICML'05, pp. 577-584, 2005
    [20]P. Neubert, P. Protzel, Superpixel benchmark and comparison, in: Proc. of Forum Bildverarbeitung, 2012
    [21] Y. Kee, M. Souiai, D. Cremers, and J. Kim, “Sequential Convex Relaxation for Mutual-Information-Based Unsupervised Figure-Ground Segmentation,” IEEE Conf. onf Comput. Vis. Pattern Recognit., 2014
    [22] Matlab Tutorial: Digital Image Processing 6 - Smoothing: Low pass filter

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE