研究生: |
吳學仁 Wu, Syue-Ren |
---|---|
論文名稱: |
研發硬 X 光顯微術用之波帶片及其應用於即時觀察奈米尺度下的電化學行為 Development of zone plate based hard-X-ray microscopy and its application for nanoscale in situ imaging of electrochemical process |
指導教授: |
胡宇光
Hwu, Yeu-Kuang 曾繁根 Tseng, Fan-Gang |
口試委員: |
林鴻明
Lin, Hong-Ming 楊重熙 Yang, Chung-Shi 林招松 Lin, Chao-Sung |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 122 |
中文關鍵詞: | 全視野穿透式硬 X 光顯微鏡 、菲涅耳波帶片 、X 光顯微術 、放射學 、微斷層攝影 |
外文關鍵詞: | Full Field Transmission Hard X-rays microscope (TXM), Fresnel Zone Plate, microtomography, X-ray microscopy, radiology |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由奈米級結構的光學元件的研發,使得硬 X 光顯微術有顯著的發展,尤
其是應用在觀測生物神經元與利用即時觀測去研究電化學現象上。本論文以下分
為三個部分討論。首先,在顯微鏡的研發上我們成功的製作出 20 奈米的菲涅耳
波帶片,並且在經過測試後得到小於 17 奈米的解析度。在目前的硬 X 光領域,
小於 17 奈米是最佳的解析度。
第二部份的研究是關於觀測在奈米尺度下的電化學電鍍所產生的奈米級結
構在電鍍過程中的演化,我們成功的應用硬 X 光顯微鏡偵測到漸進式與瞬時式成
核現象,然而不同的成核機制取決的濃度上的變化。
最後一部分是藉由穿透式 X 光顯微鏡的即時影像討論過電位與微米結構的
模板對銅電鍍的影響。銅晶粒的成長會隨著過電位的增加而變小。而微米結構的
模板在電鍍過程中會限制銅離子的擴散,然後還原出樹枝狀結構的金屬銅。
Full field transmission hard X-rays microscopy (TXM) was developed with
nanofabricated optics and applied to neuroimaging and in situ study of
electrochemistry. This thesis consists of three parts. In the first part, the
record-breaking technology development in our research group in fabricating high
performance diffractive optics for hard-x-ray imaging such as Fresnel Zone plate
(FZP), was described in details.. Specifically, we obtained <17 nm image resolution
defined by Rayleigh criteria using these FZPs with an outermost zones of 20 nm FZPs
as an image objectives for >8 keV X-ray photons with rigorous tests.
The second part of this thesis describe the application of the TXM to study a the
nanostructure evolution occurred in the Cu electrodeposition. We presented the 3D
real time in situ microscopy results to characterize the progressive and instantaneous
mode of Cu nucleation processes. We found that the nucleation behavior was driven
by different copper sulfate concentration.
The third part of this thesis reveals the influence of applied overpotential and the
use of microstructured template in the copper electrodeposition. Specifically, when
the overpotential is increased in electrodeposition, the size of copper clusters
generated was smaller than that produced in lower overpotential. Using
microstructured template in the electrodeposition to limit the copper iron diffusion
created dendritic electrodeposits which indicated diffusion limited growth.
104
Reference
[1] Y. Hwu, W. L. Tsai, J. H. Je, S. K. Seol, Bora Kim, A. Groso, G. Margaritondo,
Kyu-Ho Lee, Je-Kyung Seong,“Synchrotron microangiography with no contrast
agent”,Physics in Medicine and Biology , vol.49, 2004, pp. 501
[2] J. C. Andrews, F. Meirer, Y. Liu, Z. Mester, P. Pianetta, “NanoscaleX-ray
microscopic imaging of mammalian mineralized tissue”, Microsc Microanal, vol.16,
2010, pp.327–36
[3] J. Chen, Y. Yang, X. Zhang, J. C. Andrews, P. Pianetta, Y. Guan, G. Liu, Y. Xiong,
Z. Wu, Y. Yian.“3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by
full-field transmission X-ray microscopy at 5.4 keV.”,Anal Bioanal Chem , vol.397,
2010, pp.2117–21
[4] W. Meyer-Ilse, D. Hamamoto, A. Nair, S. A. Lelievre, G. Denbeaux, L. Johnson, A.
L. Pearson, D. Yager, M. A. Legros, C. A. Larabell,“High resolution protein
localization using soft X-ray microscopy”. J Microsc , vol.201, 2001, pp.395–403
[5] D. Weiss, G. Schneider, S. Vogt, P. Guttmann, B. Niemann, D. Rudolph, G.
schmahl, “Tomographic imaging of biological specimens with the cryo transmission
X-ray microscopes”, Nucl Instrum Methods Phys Rev A , vol.467, 2001, pp.1308–11
[6] M. Hoshino, S. Aoki,“Laser plasma soft X-ray microscope with Wolter mirrors for
observation of biological specimens in air”, Jpn. J. Appl. Phys. I, vol.45, 2006,
pp.989-994
[7] A. G. Michette, I. C. E. Turcu, M. S. Schulz, M. T. Browne, G. R. Morrison, P. 105
Fluck, C. J. Buckley, G. F. Foster,“Scanning-X-Ray Microscopy Using A
Laser-Plasma Source”, Rev. Sci. Instrum, vol.64, 1993, pp.1478-1482
[8] P. A. C. Jansson, U. Vogt, H. M. Hertz,“Liquid-nitrogen-jet laser-plasma source
for compact soft x-ray microscopy”, Rev. Sci. Instrum, vol.76, 2005, 043503
[9] J. de Groot, O. Hemberg, A. Holmberg, H. M. Hertz,“Target optimization of a
water-window liquid-jet laser-plasma source”, J. Appl. Phys, vol.94, 2003,
pp.3717-3721
[10] O. Hemberg, B. A. M. Hansson, M. Berglund, H. M. Hertz,“Stability of
droplet-target laser-plasma soft X-ray sources”, J. Appl. Phys. vol.88, 2000, pp.
5421-5425
[11] J. P. Boeuf, L. C. Pitchford,“Pseudospark discharges via computer simulation”,
IEEE T. Plasma Sci, vol.19, 1991, pp.286-296
[12] M. Benk, K. Bergmann, D. Schafer, T. Wilhein,“Compact soft x-ray microscope
using a gas-discharge light source”, Opt. Lett, vol.33, 2008, pp.2359-2361
[13] J. J. Rocca,“Table-top soft X-ray lasers”, Rev. Sci. Instrum, vol.70, 1999,
pp.3799-3827
[14] J. Feldhaus, J. Arthur, J. B. Hastings, “X-ray free-electron lasers”, J. Phys. B: At.
Mol. Opt., vol.38, 2005, pp.S799
[15] Y. T. Chen, T. N. Lo, Y. S. Chu, J. Yi, C.J. Liu, J.Y. Wang, C.L. Wang, C.W. Chiu,
T. E. Hua, Y. Hwu, Q.Shen, G. C. Yin, K. S. Liang, H. M. Lin, J. H. Je, G.
Margaritondo ,“Full field hard X-raymicroscopy below30 nm: a challenging 106
nanofabrication achievement”. Nanotechnology, vol. 19, 2008, pp. 395302
[16] Y. S. Chu, J. M. Yi, F. De Carlo, Q. Shen, W. K. Lee, H. J Wu, C. L. Wang, J. Y.
Wang, C. J. Liu, C. H. Wang, S. R. Wu, C. C. Chien, Y. Hwu, A. Tkachuk, W. Yun, M.
Feser, K. S. Liang, C. S. Yang, J. H. Je, G. Margaritondo,“Hard-X-ray microscopy
with Fresnel zone plates reaches 40 nm Rayleigh resolution”. Appl Phys Lett , vol.92,
2008, pp.103119
[17] Y. T. Chen, T. Y. Chen, J. Yi, Y. S. Chu, W. K. Lee, C. L. Wang, I. M. Kempson, Y.
Hwu, V. Gajdosik, G. Margaritonto, “Hard x-ray Zernike microscopy reaches 30 nm
resolution”, OPTICS LETTERS , Vol. 36, No. 7, 2011, pp.1269
[18] T. Y. Chen, Y. T. Chen, C. L. Wang, I. M. Kempson, W. K. Lee, Y. S. Chu, Y.
Hwu, G. Margaritondo,“Full-field microimaging with 8 keV X-rays achieves a spatial
resolutions better than 20 nm”,Opt. Express, vol. 19, 2011, pp.19919
[19] G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M.
Feser, W. Yun, H. P. D. Shieh,“30 nm resolution x-ray imaging at 8 keV using third
order diffraction of a zone plate lens objective in a transmission microscope”,
Appl.Phys. Lett., vol. 89, 2006, pp. 221122
[20] H. R. Wu, S. T. Chen, Y. S. Chu, R. Conley, N. Bouet, C. C. Chien, H. H. Chen,
C. H. Lin, H. T. Tung, Y. S. Chen,“Nanoresolution radiology of neurons”, J. Phys. D
Appl. Phys., vol. 45, 2012, pp. 242001:1–242001:4
[21] T. N. Lo, Y. T. Chen, C. W. Chiu, C. J. Liu, S. R. Wu, I. K. Lin, C. I. Su, W. D.
Chang, Y. Hwu, B. Y. Shew,“E-beam lithography and electrodeposition fabrication of 107
thick nanostructured devices”, J. Phys. D Appl. Phys., vol.40, 2007, pp. 3172–3176.
[22] Y. T. Chen, T. N. Lo, C. W. Chiu, J. Y. Wang, C. L. Wang, C. J. Liu, S. R. Wu,
S. T. Jeng, C. C. Yang, J. Shiue,“Fabrication of high-aspect-ratio Fresnel zone plate
by e-beam lithography and electroplating”, J. Synchrotron Radiat., vol.15, 2008, pp.
170–175
[23] A. Holmberg, J. Reinspach, M. Lindblom, E. Chubarova, M. Bertilson, O. von
Hofsten, D. Nilsson, M. Selin, D. Larsson, P. Skoglund,“Towards 10-nm soft X-ray
zone plate fabrication”, AIP Conf. Proc., vol.1365, 2011, pp. 18–23
[24] J. Reinspach, M. Lindblom, O. V. Hofsten, M. Bertilson, H. M. Hertz, A.
Holmberg, “Process development for improved soft X-ray zone plates, Microelectr”.
Eng., vol.87, 2010, pp. 1583–1586
[25] E. Chubarova, D. Nilsson, M. Lindblom, J. Reinspach, J. Birch, U. Vogt, H. M.
Hertz, A. Holmberg,“Platinum zone plates for hard X-rays applications”, Microelectr.
Eng., vol.88, 2011, pp.3123–3126
[26] M. Mayer, C. Grévent, A. Szeghalmi, M. Knez, M. Weigand, S. Rehbein, G.
Schneider, B. Baretzky, G. Schütz,“Multilayer Fresnel zone plate for soft X-ray
microscopy resolves sub-39 nm structures”, Ultramicroscopy, vol.111,, 2011, pp.
1706–1711.
[27] T. Koyama, H. Takano, S. Konishi, T. Tsuji, H. Takenaka, S. Ichimaru, T. Ohchi,
Y. Kagoshima,“Circular multilayer zone plate for high-energy X-ray nano-imaging”,
Rev. Sci. Instrum., vol.83, 2012, pp.013705:1–013705:4 108
[28] C. C. Chien, H. H. Chen, S. F. Lai, K. C. Wu, X. Cai, Y. Hwu, C. Petibois, Y.
Chu, G. Margaritondo,“Gold nanoparticles as high-resolution X-ray imaging contrast
agents for the analysis of tumor-related micro-vasculature”, J. Nanobiotechnol.,
vol.10, 2012, pp.10–21
[29] S. Gorelick, J. Vila-Comamala, V. A. Guzenko, R. Barrett, M. Salome, C.
David,“High-efficiency Fresnel zone plates for hard X-rays by 100 keV e-beam
lithography and electroplating”, J. Synchrotron Radiat., vol.18, 2011, 442–446.
[30] Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, W.
Yun,“Nanofabrication of high aspect ratio 24 nm X-ray zone plates for X-ray imaging
applications”, J. Vac. Sci. Technol. B, vol.25, 2007, pp.2004–2007
[31] S. Werner, S. Rehbein, P. Guttmann, S. Heim, G. Schneider,“Towards high
diffraction efficiency zone plates for X-ray microscopy”, Microelectr. Eng., vol.87,
2010, pp.1557–1560
[32] Y. Kagoshima, H. Takano, T. Koyamay, Y. Tsusaka, A. Saikubo,
“Tandem-phase zone-plate optics for high-energy X-ray focusing”, Jpn. J. Appl. Phys.,
vol.50, 2011, pp.022503:1–022503:5
[33] S. Berujon, H. Wang, I. Pape, K. Sawhney, S. Rutishauser, C. David, “X-ray
submicrometer phase contrast imaging with a Fresnel zone plate and a two
dimensional grating interferometer”, Optics Letters, vol.37, 2012, pp.1622–1624
[34] D. Nilsson, F. Uhlén, J. Reinspach, H. M. Hertz, A. Holmberg, H. Sinn, U. Vogt,
“Thermal stability of tungsten zone plates for focusing hard X-ray free-electron laser 109
radiation”, New J. Phys., vol.14, 2012
[35] H. Kuwabara, W. Yashiro, S. Harasse, H. Mizutani, A. Momose,“ Hard-X-ray
phase-difference microscopy with a low-brilliance laboratory X-ray source”, Appl.
Phys. Express, vol.4, 2011, pp.062502:1–062502:3.
[36] F. Uhlén, S. Lindqvist, D. Nilsson, J. Reinspach, U. Vogt, H. M. Hertz, A.
Holmberg,“ New diamond nanofabrication process for hard X-ray zone plates”, J. Vac.
Sci. Technol. B, vol.29, 2011, pp. 06FG03:1–06FG03:4.
[37] C. David, S. Gorelick, S. Rutishauser, J. Krzywinski, J. Vila-Comamala, V. A.
Guzenko, O. Bunk, E. Färm, M. Ritala, M. Cammarata,“ Nanofocusing of hard X-ray
free electron laser pulses using diamond based Fresnel zone plates”, Sci. Rep., vol.1,
2011, pp.57–61
[38] M. J. Wojcik, V. Joshi, A. V. Sumant, R. Divan, L. E. Ocola, M. Lu, D. C.
Mancini,“Nanofabrication of X-ray zone plates using ultrananocrystalline diamond
molds and Electroforming”, J. Vac. Sci. Technol. B, vol. 28, 2010,C6P30:1–C6P30:6
[39] S. S. Sarkar, H. H. Solak, J. Raabe, C. David, J. F. van der Veen, “Fabrication of
Fresnel zone plates with 25 nm zone width using extreme ultraviolet holography”.
Microelectr, Eng., vol. 87, 2010, pp.854–858
[40] T. Gorniak, R. Heine, A. P. Mancuso, F. Staier, C. Christophis, M. E. Pettitt, A.
Sakdinawat, R. T. Reusch, N. Guerassimova, J. Feldhaus,“ X-ray holographic
microscopy with zone plates applied to biological samples in the water window using
3rd harmonic radiation from the free-electron laser FLASH”, Opt. Express, vol.19, 110
2011, pp. 11059–11070
[41] W. Chao, P. Fischer, T. Tyliszczak, S. Rekawa, E. Anderson, P. Naulleau, “Real
space soft X-ray imaging at 10 nm spatial resolution”, Opt. Express, vol.20, 2012, pp.
9777–9783
[42] S. Rehbein, P. Guttmann, S. Werner, G. Schneider,“Characterization of the
resolving power and contrast transfer function of a transmission X-ray microscope
with partially coherent illumination”, Opt. Express, vol.20, 2012, pp.5830–5839
[43] T. Liese, V. Radisch, I. Knorr, M. Reese, P. Großmann, K. Mann, H. U.
Krebs,“Development of laser deposited multilayer zone plate structures for soft X-ray
radiation”. Appl. Surface Sci., vol.257, 2011, pp.5138–5141
[44] P. Willmott, An Introduction to Synchrotron Radiation; Wiley: New York, NY,
USA, 2011
[45] P. R. Ribic, G. Margaritondo,“Status and prospects of X-ray free-electron lasers
(X-FELs): A simple presentation”, J. Phys. D Appl. Phys., vol.45, 2012
[46] M. Howells, C. Jacobsen, T. Warwick, A. van den Bos,“Principles and
Applications of Zone Plate X-ray Microscopes”, In Science of Microscopy; P. W.
Hawkes, J. C. H. Spence, Eds., volume II, Springer: New York, NY, USA, 2007, pp.
835–926
[47] B. L. Henke, X-ray Interaction with Matter. Available online:
http://henke.lbl.gov/optical_constants/.(accessed on 27 September 2012)
[48] J. Kirz,“Phase zone plates for X rays and the extreme UV”. J. Opt. Soc. Am., 111
vol.64, 1974, pp.301–309
[49] H. M. Quinley, A. G. Peele, Z. Cai, D. Paterson, K. A. Nugent,“Diffractive
imaging of highly focused X-ray fields”, Nat. Physics, vol.2, 2006, pp.101–104
[50] S. Honig, R. Hoppe, J. Patommel, A. Schropp, S. Stephan, S. Schoder, M.
Burghammer, C. G. Schroer,“Full optical characterization of coherent X-ray
nanobeams by ptychographic imaging”, Opt. Express, vol.19, 2011, pp.16324–16329
[51] J. Vila-Comalala, A. Diaz, M. Guizar-Sicairos, A. Mantion, A. Menzel, C. M.
Kewish, O. Bunk, C. David,“Characterization of high- resolution diffractive X-ray
optics by ptychographic coherent diffraction imaging”, Opt. Express, vol.19, 2011,
pp.21333–21344
[52] K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone
doubling technique to produce ultra-high resolution X-ray optics”, Phys. Rev. Lett.,
vol.99, 2007, pp. 264801:1–264801:4
[53] J. Vila-Comalala, S. Gorelick, E. Färm, C. M. Kewish, A. Diaz, R. Barrett, V. A.
Guzenko, M. Ritala, C. David,“Ultra-high resolution zone-doubled diffractive X-ray
optics for the multi-keV regime”, Opt. Express, vol.19, 2011, pp.175–184
[54] E. Hutter, D. Maysinger,“Gold nanoparticles and quantum dots for bioimaging”.
Microsc, Res. Tech., vol.74, 2011, pp.592–604
[55] L. Scopsi, L. I. Larsson, L. Bastholm, M.H. Nielsen,“Silve-enhanced gold probes
as markers for scanning electron microscopy”, Histochemistry, vol.86, 1986,
pp.35–41 112
[56] M. A. Green, L. Sviland, A. J. Malcolm, A. D. Pearson,“Improved method for
immunoperoxidase detection of membrane antigens in frozen sections”, J. Clin.
Pathol., vol.42, 1989, pp.875–880
[57] D. Attwood, SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION:
PRINCIPLE AND APPLICATIONS, Cambridge University Press, New York, 1999,
p360
[58] S. Vogt, G. Schneider, A. Steuernagel, J. Lucchesi, E. Schulze, D. Rudolph, and
G. Schmahl,“ X-Ray Microscopic Studies of the Drosophila Dosage Compensation
Complex”, Journal of Structural Biology, vol.132, 2000, pp.123–132
[59] J. W. Goodman, Introduction to Fourier Optics (third edition), Roberts &
Company Publishers, 2005, p159
[60] F. Zernike,“Das phasenkontrastverfahren bei der Mikroskopischen beobachtung”
Z. Tech. Phys., vol.16, 1935, pp.454
[61] G. McDermott, M. A. Le Gros, C. G. Knoechei, M. Uchida and C. A.
Larabell,“Soft X-ray tomography and cryogenic light microscopy: the cool
combination in cellular imaging”, Trends Cell Biol , vol.19, 2009, pp.587–95
[62] J. L. Carrascosa, F. J. Chichon, E. Pereiro, M. J. Rodriguez, J. J. Fernandez, M.
Esteban, S. Heim, P. Guttmann, G. Schneider, “Cryo-X-ray tomography of vaccinia
virus membranes and inner compartments”, J Struct Biol, vol.168, 2009, pp. 234–9
[63] J Thieme, G Schneider, C Knochel,“X-ray tomography of a microhabitat of
bacteria and other soil colloids with sub-100 nm resolution”, Micron, vol.34, 2003, 113
pp.339–44
[64] W. W. Gu, L. D. Etkin, M. A. Le Gros, C. A. Larabell,“X-ray tomography of
Schizosaccharomyces pombe”, Differentiation, vol.75, 2007, pp.529–35
[65] E. Hanssen, C. Knoechel, N. Klonis, N. Abu-Bakar, S. Deed, M. LeGros, C.
Larabell, L. Tilley,“Cryo transmission X-ray imaging of the malaria parasite, P.
falciparum”. J Struct Biol , vol.173, 2011, pp.161–8
[66] C. A. Larabell and M. A. Le Gros,“X-ray tomography generates 3D
reconstructions of the yeast”, Mol Biol Cell, vol.15, 2004, pp.957–62
[67] C. A. Larabell, K. A. Nugent,“Imaging cellular architecture with X-rays”, Curr
Opin Struct Biol, vol.20, 2010, pp.623–31
[68] M. A. Le Gros, G McDermott, C. A. Larabell,“X-ray tomography of whole cells”,
Curr Opin Struct Biol, vol.15, 2005, pp.593–600
[69] D. Y. Parkinson, G. McDermott, L. D. Etkin, M. A. Le Gros, C. A. Larabell,
“Quantitative 3D imaging of eukaryotic cells using soft X-ray tomography”, J Struct
Biol, vol.162, 2008, pp.380–6
[70] M. Uchida, G. McDermott, M. Wetzler, M. A. Le Gros, M. Myllys, C. Knoechel,
A. E. Barron, C. A. Larabell.“Soft X-ray tomography of phenotypic switching and the
cellular response to antifungal peptoids in Candida albicans.”, Proc Natl Acad Sci U S
A 2009;, vol.106, pp.19375–80.
[71] M. Uchida, Y. Sun, G. McDermott, C. Knoechel, M. A. Le Gros, D. Parkinson, D.
G. Drubin, C. A. Larabell,“Quantitative analysis of yeast internal architecture using 114
soft X-ray tomography”, Yeast, vol.28, 2011, pp.227–36
[72] W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, D. T. Attwood, “Soft
X-ray microscopy at a spatial resolution better than 15 nm”, Nature, vol.435, 2005,
pp.1210-3
[73] W. Chao, J. Kim, S. Rekawa, P. Fischer, E. H. Anderson,“Demonstration of 12
nm resolution Fresnel zone plate lens based soft X-ray microscopy.”,Opt Express, vol.
17, 2009, pp.17669–77
[74] G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima, J. B.
Heymann, W.G. Muller, J. G. Mcnally, “Threedimensional cellular ultrastructure
resolved by X-ray microscopy”, Nat Methods, vol.7, 2010, pp.985–8
[75] H. Jeff, B. Gregory, J. K. Lewis,“Becher's world of the cell. 8th ed. San
Francisco: Pearson Education Inc”, 2009
[76] C. Patty, B. Barnett, B. Mooney, A. Kahn, S. Levy, Y. Liu, P. Pianetta, J. C.
Andrews,“Using X-ray microscopy and Hg L 3 XANES to study Hg binding in the
Rhizosphere of Spartina Cordgrass”, Environ Sci Technol, vol.43, 2009, pp.7397–402
[77] G. B. Kim, Y. J. Yoon, T. J. Shin, H. S. Youn, Y. S. Gho, S. J. Lee, “X-ray
imaging of various biological samples using a phase-contrast hard X-ray microscope”,
Microsc Res Tech, vol.71, 2008, pp.639–43
[78] Y. Yang, W. Li, G. Liu, X. Zhang, J. Chen, W. Wu, Y. Guan, Y. Xiong, Y. Tian, Z.
Wu,“3D visualization of subcellular structures of Schizosaccharomyces pombe by
hard X-ray tomography”, J Microsc, vol.240, 2010, pp.14–20 115
[79] J. C. Andrews, S. Brennan, C. Patty, K. Luening, P. Pianetta, E. Almeida, M. C.
H. van der Meulen, M. Feser, J. Gelb, J. Rudati, A. Tkachuk, W. B. Yun. “A high
resolution hard X-ray bio-imaging facility at SSRL”, Synchrotron Radiat News, vol.
21(3), 2008, pp.17–26
[80] S. Jearanaikoon, J. V. Abraham-Peskir,“An X-ray microscopy perspective on the
effect of glutaraldehyde fixation on cells”, J Microsc, vol.218, 2005, pp.185–92
[81] R. Wright,“Transmission electron microscopy of yeast”, Microsc Res Tech , vol.
51, 2000, pp.496–510
[82] H. Liu, F. Favier, K. Ng, M. P. Zach, R. M. Penner,“Size-selective
electrodeposition of meso-scale metal particles: a general method”,Electrochimica
Acta ,vol. 47, 2001, pp. 671-677
[83] W. Shao, G. Pattanaik, G. Zangari,“Electrochemical Nucleation and growth of
copper from Acidic Sulfate Electrolytes on n-Si (001)”, Journal of The
Electrochemical Society, vol. 154, no 7, 2007, D339-D345
[84] A. Radisic, A. C. West, P. C. Searson,“Influence of additives on Nucleation and
Growth of Copper on n-Si(111) from Acidic Sulfate Solutions”, Journal of The
Electrochemical Society, vol. 149, no 2, 2002, C94-C99
[85] G. Jnawali, T. Wagner, H. Hattab, R. Moller, M. H. Hoegen,“Nucleation and
initial growth in the semimetallic homoepitaxial system of Bi on Bi (111)”,
PHYSICAL REVIEW B, vol. 79, 2009, pp. 193306
[86] D. Grujicic, B. Pesic,“Electrodeposition of copper: the nucleation mechanisms”, 116
Electrochimica Acta, vol 47, 2002, pp. 2901-2912
[87] A. Radisic, P. M. Vereecken, J. B. Hannon, P. C. Searson, F. M. Ross,
“Quantifying Electrochemical Nucleation and Growth of Nanoscale Clusters Using
Real-Time Kinetic Data”, Nano Lett., Vol. 6, 2006, No. 2
[88] F. R. Elder, A. M. Gurewitsch, R. V. Langmuir, H. C. Pollock, "Radiation from
Electrons in Synchrotron " Physical Review, vol. 71, Issue 11, 1947, pp. 829-830
[89] Q. Shen, W. K. Lee, K. Fezzaa, Y. S. Chu, F. De Carlo, P. Jemian, J. Ilavsky, M.
Erdmann, G. G. Long,“Dedicated full-field X-ray imaging beamline at Advanced
Photon Source” , Nucl. Instrum.Methods A vol.582, 2007, pp.77
[90] Y. F. Song, C. H. Chang, C. Y. Liu, S. H. Chang, U. S. Jeng, Y. H. Lai, D. G.
Liu, S. C. Chung, K. L. Tsang, G. C. Yin, J. F. Lee, H. S. Sheu, M. T. Tang, C. S.
Hwang, Y. K. Hwu, K. S. Liang,“X-ray beamlines for structural studies at the
NSRRC superconducting wavelength shifter”, J. Synchrotron Radiat.,vol. 14, 2007,
pp. 320
[91] J. Yi, Y. S. Chu, Y. T. Chen, T. Y. Chen, Y. Hwu, G.
Margaritondo,“High-resolution hard-x-ray microscopy using second-order zone-plate
diffraction”, J. Phys. D: Appl. Phys., vol. 44, 2011, pp.232001
[92] J.Vila-Comamala, S. Gorelick, E. F¨arm, C. M. Kewish, A. Diaz, R. Barret, V. A.
Guzenko, M. Ritala and C. David,“Ultra-high resolution zone-doubled diffractive
X-ray optics for the multi-keV regime”,Opt. Express, vol.19, 2011, pp.175
[93] J. Vila-Comamala, M. Dierolf, C. M. Kewish, P. Thibault, T. Pilvi, E. Färm, V. 117
Guzenko, S. Gorelick, A. Menzel, O. Bunk, M. Ritala, F. Pfeiffer, C. David, M.
Denecke, C. T. Walker, “High spatial resolution STXM at 6.2 keV photon energy,” et
al, AIP Conf. Proc., vol. 1221, 2010, pp.80
[94] B. Kaulich, P. Thibault, A. Gianocelli, M. Kiskinova,“Transmission and
emission x-ray microscopy: operation modes, contrast mechanisms and
applications”,J. Phys. C: Solid State Phys., vol. 23, 2011, pp. 083002
[95] M. Mayer, C. Gr´event, A. Szeghalmi, M. Knez, M. Weigand, S. Rehbein, G.
Schneider, B. Baretzky, G. Sch¨utz,“ Multilayer Fresnel zone plate for soft X-ray
microscopy resolves sub-39 nm structures ”, Ultramicroscopy, vol. 111, 2011, pp.
1076
[96] Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, W.
Yun,“ Nanofabrication of high aspect ratio 24 nm x-ray zone plates for x-ray imaging
applications”, J. Vac Sci Technol. B, vol. 25, 2007, pp. 2004
[97] T. N. Lo, Y. T. Chen, C. W. Chiu, C. J. Liu, S R Wu, I. K. Lin, C. I. Su,W. D.
Chang, Y. Hwu, B. Y. Shew, C. C. Chiang, J. H. Je, G. Margaritondo,“E-beam
lithography and electrodeposition fabrication of thick nanostructured devices ” , J.
Phys. D: Appl. Phys., vol.40, 2007, pp.3172
[98] H. R. Wu, S. T. Chen, Y. S. Chu, R. Conley, N. Bouet, C. C. Chien, H. H. Chen,
C. H. Lin, H. T. Tung, Y. S. Chen, G. Margaritondo, J. H. Je ,Y. Hwu“Nanoresolution
radiology of neurons”,J. Phys. D, vol. 45, 2012 , pp.242001 118
[99] T. N. Lo, Y. T. Chen, C. W. Chiu, C. J. Liu, H. J. Wu, I. K. Lin, C. I. Su, W. D.
Chang, Y. Hwu, B. Y. Shew, C. C. Chiang, J. H. Je, G. Margaritondo,“E-beam
lithography and electrodeposition fabrication of thick nanostructured devices”, J.
Phys. D, vol. 40, 2007, pp. 3172
[100] P. C. Hsu, S. K. Seol, T. N. Lo, C. J. Liu, C. L. Wang, C. S. Lin, Y. Hwu, C. H.
Chen, L. W. Chang, J. H. Je, G. Margaritondo, “Hydrogen Bubbles and the Growth
Morphology of Ramified Zinc by Electrodeposition”, J. Electrochem. Soc., vol. 155,
2008, pp.D400
[101] P. Hsu, Y. S. Chu, J. Yi, C. L. Wang, S. R. Wu, Y. Hwu, G. Margaritondo,
“Dynamical growth behavior of copper clusters during electrodeposition”, Appl. Phys.
Lett., vol. 97, 2010, pp.033101
[102] P. C. Hsu, C. S. Lin, Y. Hwu, J. H. Je, G. Margaritondo, in Electrocatalysis:
Computational, Experimental and Industrial Aspects, C. F. Zinola ed. Boca Raton,
CRC Press, 2010, p. 479
[103] L. Bonou, M. Eyraud, R. Denoyel, Y. Massiani,“ Influence of additives on Cu
electrodeposition mechanisms in acid solution: direct current study supported by
non-electrochemical measurements”, Electrochim. Acta, vol. 47, 2002, pp.4139
[104] A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamentals and
Applications, 2nd Ed., New York, Wiley, 2001 119
[105] B. J. Hwang, R. Santhanam, C. R. Wu, Y. W. Tsai,“Nucleation and growth
mechanism for the electropolymerization of aniline on highly oriented pyrolytic
graphite at higher potentials”, J. Solid State Electrochem., vol. 5, 2001, pp.280
[106] B. J. Hwang, R. Santhanam , Y. L. Lin, “Nucleation and growth mechanism of
electroformation of polypyrrole on a heat-treated gold/highly oriented pyrolytic
graphite”, Electrochim. Acta, vol. 46, 2001
, pp.2843
[107] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, H. Deligianni,
“Damascene Copper Electroplating for Chip Interconnections”, IBM J. Res. Dev., vol.
42, 1998, pp.567
[108] M. Schlesinger, M. Paunovic, Modern Electroplating, 4th Ed., Wiley, New
York, NY, 2000
[109] E. L. Smith, J. C. Barron, A. P. Abbott, K. S. Ryder,“ Time Resolved in Situ
Liquid Atomic Force Microscopy and Simultaneous Acoustic Impedance
Electrochemical Quartz Crystal Microbalance Measurements: A Study of Zn
Deposition”, Anal. Chem., vol. 81, 2009, pp. 8466
[110] M. Kang, A. A. Gewirth,“Influence of Additives on Copper Electrodeposition
on Physical Vapor Deposited (PVD) Copper Substrates”, J. Electrochem. Soc., vol.
150, 2003, pp. C426
[111] A. Sahari, A. Azizi, G. Schmerber, A. Dinia, “Nucleation, growth, and
morphological properties of electrodeposited nickel films from different baths”, Surf., 120
Rev. Lett., vol. 15, 2008, pp. 717
[112] M. Bicer , I. Sisman, “Electrodeposition and growth mechanism of SnSe thin
films”, Appl. Surf. Sci., vol. 257, 2011, pp.2944
[113] A. Radisic, P. M. Vereecken, P. C. Searson, F. M. Ross,“ The morphology and
nucleation kinetics of copper islands during electrodeposition”, Surf. Sci., vol. 600,
2006, pp.1817
[114] A. Radisic, F. M. Ross, P. C. Searson,“In Situ Study of the Growth Kinetics of
Individual Island Electrodeposition of Copper”, J. Phys. Chem. B, vol.110, 2006,
pp.7862
[115] B. Scharifker , G. Hills,“Theoretical and experimental studies of multiple
nucleation”, Electrochem. Acta, vol. 28, 1983, pp. 879
[116] M. P. Pardave, M. T. Ramirez, I. Gonzales, A. Serruya and B. R.
Scharifker,“ Silver Electrocrystallization on Vitreous Carbon from Ammonium
Hydroxide Solutions”, J. Electrochem. Soc., vol.143, 1996, pp.1551
[117] J. Fang, X. Ma, H. Cai, X. Song, B. Ding, Y. Guo,“Double-interface growth
mode of fractal silver trees within replacement reaction”, Appl. Phys. Lett., vol. 89,
2006, pp.173104.
[118] M. Wang, G. Wildburg, J. H. van Esch, P. Bennema, R. J. M. Nolte, H.
Rinsdorf,“Surface-tension-gradient-induced pattern formation in monolayers”, Phys.
Rev. Lett., vol. 71, 1993, pp.4003.
[119] J. M. Flesselles, M. O. Magnasco, A. Libchaber,“From disks to hexagons and 121
beyond: A study in two dimensions”, Phys. Rev. Lett., vol. 67, 1991, pp.2489.
[120] V. Fleury, J. H. Kaufman, D. B. Hibbert,“Mechanism of a morphology
transition in ramified electrochemical growth”, Nature, vol 367, 1994, pp.435
[121] J. Kim N. Kwon, S. Chang, K. T. Kim, D. Lee, S. Kim, S. J. Yun, D. Hwang, J.
W. Kim, Y. Huw, G. Margaritondo, J. H. Je, I. J. Rhyu,“Altered branching patterns of
Purkinje cells in mouse model for cortical development disorder” , Sci. Rep., vol. 1,
2011, pp.122
[122] C. C. Chen, J. K. Wu, H. W. Lin, T. P. Pai, T. F. Fu, C. L. Wu, T. Tully, A. S.
Chiang, “Visualizing Long-Term Memory Formation in Two Neurons of the
Drosophila Brain”,, Science, vol.335, 2012, pp.678
[123] A. S. Chiang, C. Y. Lin, C. C. Chuang, H. M. Chang, C. H. Hsieh, C. W. Yeh, C.
T. Shih, J. J. Wu, G. T. Wang, Y. C. Chen, C. C. Wu, G. Y. Chen, Y. T. Ching, P. C. Lee,
C. Y. Lin, H. H. Lin, C. C. Wu, H. W. Hsu, Y. A. Huang, J. Y. Chen, H. J. Chiang, C. F.
Lu, R. F. Ni, C. Y. Yeh, J. K. Hwang,“Three-Dimensional Reconstruction of
Brain-wide Wiring Networks in Drosophila at Single-Cell Resolution” , Curr., Biol.
vol.21, 2010, pp.1
[124] C. C. Chien, P. Y. Tseng, H. H. Chen , T. E. Hua , S. T. Chen , Y. Y. Chen , W. H.
Leng , C. H. Wang , Y. Hwu , G. C. Yin , K. S. Liang , F. R. Chen , Y. S. Chu , H. I.
Yeh, Y. C. Yang , C. S. Yang , G. L. Zhang , J. H. Je , G. Margaritondo ,“maging cells
and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy”,
Biotechnol. Adv., at press, 2012 [125] E. M. Glaser, H. Van der Loos,“Analysis of thick brain sections by
obverse—Reverse computer microscopy: Application of a new, high clarity
Golgi—Nissl stain” , J. Neurosci. Methods,
vol.4, 1981, pp.117
[126] R. Gibb, B. Kolb,“A method for vibratome sectioning of Golgi–Cox stained
whole rat brain”, J. Neurosci. Methods, vol.79, 1998, pp.1
[127] H. Hering, M. Sheng,“Dentritic spines : structure, dynamics and regulation”,
Nature Rev. Neurosci., vol.2, 2001, pp.881
[128] L. J. Stensaas,“The development of hippocampal and dorsolateral pallial
regions of the cerebral hemisphere in fetal rabbits. II. Twenty millimeter stage,
neuroblast morphology”, J. Comp. Neurol., vol.129, 1967, pp.71
[129] F. Crepel, J. Mariani, N. Delhaye-Bouchaud,“Evidence for a multiple
innervation of purkinje cells by climbing fibers in the immature rat cerebellum”, J.
Neurobiol., vol.7, 1976, pp.567
[130] C. C. Chien, H. H. Chen, S. F. Lai, K. C. Wu, X. Cai, Y. Hwu, C. Petibois, Y. S.
Chu, G. Margaritondo,“Gold nanoparticles as high-resolution X-ray imaging contrast
agents for the analysis of tumor-related micro-vasculature”, J. Nanobiotechnol.,
vol.10, 2012, pp.10
[131] A. Li, H. Gong, B. Zhang, Q. Wang, C. Yan, J. Wu, Q. Liu, A. Zeng, Q. Luo,
“Micro-Optical Sectioning Tomography to Obtain a High-Resolution Atlas of the
Mouse Brain” , Sci., vol.330, 2010, pp.1404