研究生: |
劉采靈 Liou, Tsai Ling |
---|---|
論文名稱: |
利用臨場光學干涉儀及低掠角度X光散射儀探討poly (3-hexylthiophene)在旋轉塗佈成膜之過程 In-situ optical interferometry and grazing-incidence x-ray scattering study of poly (3-hexylthiophene) film formation during spin-coating |
指導教授: |
蘇安仲
Su, An Chung |
口試委員: |
孫亞賢
阮至正 楊小青 鄭有舜 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 26 |
中文關鍵詞: | 低掠角小角度散射 、低掠角廣角散射 、旋轉塗佈 |
外文關鍵詞: | GIWAXS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
旋轉塗佈在有機太陽能電池的製備過程中扮演重要的角色,然而在先前的研究中,大多集中在純溶劑或是混合溶液系統(P3HT/PCNM)的討論,因此在本篇文章中我們將重點放在單一系統溶液(P3HT)的探討上。我們利用垂直入射光學反射儀輔以臨場低掠角小角度/廣角X光散射儀觀察P3HT高分子膜在旋轉塗佈的過程。根據垂直入射光學反射儀的結果,若直接假設整個系統為單一液體層,可以將整個旋轉塗佈的過程分為三個階段:1.流體主導階段2.揮發主導階段3.急凍階段。而當我們進一步分析,假設整個系統是由多層組成的,我們發現會有約30 奈米厚且高折射率的薄層覆蓋在氣液介面處,並且此一薄層出現的時機大致與我們在廣角X光散射儀偵測到P3HT結晶的時間吻合。從廣角散射的結果顯示,從揮發主導階段到急凍階段的過程中,高分子的相對結晶度及晶粒大小快速達到飽和值,過程中只有些微的變化;同時的我們從小角度散射的結果可得知在氣液介面處的薄層是由長軸長200奈米、短軸長10奈米的扁橢球組成,而這些扁橢球裡面充滿了P3HT結晶;若進一步觀察這些橢球的大小及數量可以發現,橢球之大小並無顯著改變,僅有數量有些微的增加。綜合以上的觀察,我們認為在旋轉塗佈的過程中,隨著溶劑快速揮發,氣液介面處會有高濃度的高分子,形成一層高折率的薄層,而這一薄層大體決定了最終膜的結構。
Spin-coating is an important process in the preparation of polymer thin films for functional applications. In previous studies, the focus lies mainly in the spin-off stage where fluid flow dominates. Here we pay more attention to the possible presence of a skin layer at the air-liquid interface starting from the relatively early stage of spin-coating. The film formation process during spin-coating of poly(3-hexylthiophene) (P3HT) solutions is examined by means of normal- incidence optical reflectivity (OR) and in-situ grazing incidence small/wide-angle X-ray scattering (GISWAXS). Straight-forward analysis (assuming a single liquid layer) of OR results indicates generally that there are 3 stages in the film-forming process: (1) the spin-off or flow-dominated stage, where the film-thinning rate decreases very quickly according to the Meyerhofer equation, (2) the evaporation-dominated stage of plateaued film-thinning rate, and (3) the freezing-in stage where the film-thinning rate drops to essentially zero. More sophisticated analysis (allowing for multi-layer stratification) suggests the emergence of a thin (ca. 30 nm in thickness) “epidermis” layer of high refractive index at the air/film surface during transition toward evaporation-dominated stage, which coincides approximately with the GIWAXS-detected emergence of P3HT crystallites. The GIWAXS results further indicate that both the relative crystallinity and crystallite size quickly reach saturated values and show only minor changes during the subsequent evaporation-dominated and freezing-in stages. Concurrent GISAXS results indicate the presence of oblate domains with equatorial diameter ≈ 200 nm and polar diameter ≈ 10 nm, within which P3HT crystallites presumably reside. The number of these oblate domains in the skin layer increases moderately with time before entering the freezing-in stage, but the size remains essentially the same.
References
1. Toolan, D. T. W.; Howse J. R. Development of in situ studies of spin coated polymer films. J. Mater. Chem. C 2013, 1, 603–616.
2. Emslie, A. G., Bonner F. T. and Peck L. G. Flow of a viscous liquid on a rotating disk, J. Appl. Phys. 1958, 858–862.
3. Meyerhofer, D. Characteristics of resist films produced by spinning. J. Appl. Phys.1978, 49, 3993−3997.
4. Birnie III, D. P. Combined flow and evaporation during spin coating of complex solutions. J. Non-Cryst. Solids 1997, 218,174−178.
5. Li, G.; Zhu R.; Yang Y. Polymer solar cells. Nat. Photonics 2012, 6, 153−161.
6. Chen, W.; Nikiforov, M. P. ; Darling, S. B. Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. 2012, 5, 8045–8074.
7. Collins, B. A.; Li Z.; Tumbleston J. R.; Gann E.; McNeill C. R.; Ade H. Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in PTB7:PC71 BM Solar Cells. Adv. Energy Mater. 2013, 3, 65–74.
8. Dang, M. T.; Hirsch L.; Wantz G.; Wuest J. D. Controlling the morphology and performance bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 2013, 113, 3734−3765.
9. Liu F.; Gu Y.; Shen X.; Ferdous S.; Wanga H. W.; Russell T. P. Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Prog. Polym. Sci. 2013, 38, 1990–2052.
10. Brinkmann M.; Rannou P. Molecular Weight Dependence of Chain Packing and Semicrystalline Structure in Oriented Films of Regioregular Poly(3-hexylthiophene) Revealed by High-Resolution Transmission Electron Microscopy. Macromolecules 2009, 42, 1525.
11. Surin, M.; Leclère Ph.; Lazzaroni R.; Yuen J. D.; Wang G.; Moses D.; Heeger A.J.; Cho S.; Lee K. Relationship between the microscopic morphology and the charge transport properties in poly(3-hexylthiophene) field-effect transistors .Appl. Phys. 2006, 100, 033712.
12. Liu,Y.; Zhao J.; Li Z.; Mu C.; Ma W.; Hu H.; Jiang K.; Lin H.; Ade H.; Yan H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nat Commun. 2014, 5, 5293.
13. Van Franeker, J. J.; Turbiez M.; Li W.; Wienk M. M.; Janssen R. A. J. A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 2015, 6, 6229.
14. Proller S.; Liu F.; Zhu C.; Wang C.; Russell P. Thomas; Hexener A.; Muller-Buschbaum P.; Herzig M. Eva, Following the morphology formation in situ in printed active layers for organic solar cells. Adv.Energy Matter. 2015, 1501580.
15. Chou K. W.; Yan Bi.; Li R.; Li Q. E.; Zhao K.; Anjum H. D.; Alvarez S.; Gassaway R.; Biocca A.; Thoroddsen T. S.; HexemeA.; Amassian A. Spin-cast bulk heterojunction solar cells: A dynamical investigation, Adv. Mater.. 2013, 25, 1923–1929
16. Filmetrics, Inc., http://www.filmetrics.com/
17. Rauscher M.; Paniago R.; Metzger H.; Kovats Z.; Domke J.; Peisl J. Grazing incidence small angle x-ray scattering from free-standing nanostructures. J.Appl. Phys.1996,86,6763-6769.
18. Wang T.; Dunbar A. D. F.; Staniec P. A.; Pearson A. J.; Hopkinson P. E.; MacDonald J. E.; Lilliu S.; Pizzey C.; Terrill N. J.; Donald A. M.; Ryan A. J.; Jones R. A. L.; Lidzey D. G. The development of nanoscale morphology in polymer: fullerene photovoltaic blends during solvent casting. Soft Matter ,2010 , 6 , 4128 .
19. Schmidt-Hansberg B.; Sanyal M. ; Klein M. F. G.; Pfaff M. ; Schnabel N.; Jaiser S.; Vorobiev A.; Müller E.; Colsmann A.; Scharfer P.; Gerthsen D.; Lemmer U.; Barrena E.; Schabel W.; Moving through the Diagram: Morphology Formation in Solution Cast PolymerFullerene Blend Films for Organic Solar Cells ACS Nano 2011 , 5 , 8579 .
20. Babonneau, D. Journal of Applied Crystallography 2010, 43(4), 929-936