簡易檢索 / 詳目顯示

研究生: 林美慧
Lin, Mei-Hui
論文名稱: 解決頻域盲訊號分離的不明確問題
Solving the Ambiguity Problem in Frequency Domain Blind Source Separation
指導教授: 王小川
Wang, Hsiao-Chuan
口試委員: 李琳山
陳信宏
王逸如
王小川
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 48
中文關鍵詞: 盲訊號分離獨立成份分析聯合對角化
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文選擇在頻域上執行盲訊號分離,其系統具有較佳的效率。在頻域計算的優勢為可以在每個頻率柱(frequency bin)分離且獨立,但其代價為存在膨脹(scale ambiguity)和排列(permutation ambiguity)的不確定性。其不明確原因為本篇論文主要探討重點。運用獨立成份分析演算法達成盲訊號分離,使用二階統計量來分離混合訊號,導致了聯合對角化問題。採用聯合近似對角化演算法處理盲訊號分離問題時,混合訊號不必經過白色化和集中化的過程,可減少訊號在進行分離前因作前置處理而失真的可能性。由於頻域摺積混合的方式會存在膨脹及排列問題,因此本論文利用訊號包絡線(envelope)結構增加頻域的連結,並且應用分離矩陣和訊號相鄰頻帶的相關性解決上述不明確問題。實驗用三支麥克風在真實環境中錄製分別由三個喇叭播放的音檔,利用論文架構從混合聲音中分離出各自的音檔。結果證實於真實環境下多個訊號源的分離,其平均訊號干擾率比值有明顯進步,理論分析和實驗的結果都顯示了該方法的有效性,代表此方法可有效提升盲訊號分離的結果。


    摘要 I 致謝 II 目錄 III 圖表索引 V 第一章 導論 1 1.1 研究起源 1 1.2 研究方法 2 1.3 章節大綱 5 第二章 獨立成分分析 6 2.1 獨立成分分析基本理論 6 2.2 前置處理 8 2.3 獨立成分分析演算法簡介 9 2.3.1 獨立性函數 9 2.3.2 最佳化演算法 12 2.4 常見的獨立成分分析 13 第三章 摺積混合訊號模型 16 3.1 時域訊號模型 16 3.2 頻域訊號模型 18 第四章 聯合近似對角化演算法 19 4.1 聯合近似對角化演算過程 20 4.2 JADIAG演算法用於兩個2×2矩陣 22 4.3 JADIAG演算法流程整理 24 第五章 不確定因素與其解決方法 25 5.1 不確定因素 25 5.2 解決方法 26 5.2.1 排列問題 26 5.2.2 膨脹問題 30 5.3 系統流程 32 第六章 實驗測試及結果 33 6.1 實驗環境 33 6.2 成效評量 34 6.3 訊號波形 40 第七章 結論與未來展望 45 參考文獻

    [1] Te-Won Lee and Gil-Jin Jang. “The statistical structures of male and female speech signals.” ICASSP'01 Vol:1, Page:105-108 (2001)
    [2] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm for independent compo-nent analysis,” Neural Comput. Vol.9, No.7, pp. 1483-1492, 1997.
    [3] Pau Bofill and Enric Monte. “Underdetermined convoluted source reconstruction using LP and SOCP, and a neural approximator of the optimizer.” ICA (2006)
    [4] Jean-Francois Cardoso, “SOURCE SEPARATION USING HIGHER ORDER MOMENTS”, Icassp’89. pp. 2109-2112 (1998)
    [5] A.J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution”, Neural Comput., vol. 7,pp. 1129–1159, (1995).
    [6] J.F. Cardoso and A. Souloumiac,“Blind beamforming for non Gaussian signals.” IEE Proceedings-F, Vol:140, Page:362-370, (1993).
    [7] R. Mukai, S. Araki, and S. Makino, “Separation and dereverberation perfor-mance of frequency domain blind source separation,” in Proceedings of the 3rd International Conference on Independent Component Analysis and Blind Signal Separation (ICA ’01), pp. 230–235, San Diego, Calif, USA, December 2001.
    [8] D.-T. Pham and J.-F. Cardoso, “Blind separation of instantaneous mixtures of nonstationary sources,” IEEE Transactions on Signal Processing, vol. 49, no. 9, pp. 1837–1848, 2001.
    [9] D.-T. Pham, Ch. Servi`ere, and H. Boumaraf, “Blind separation of convolutive audio mixtures using nonstationarity,” in Proceedings of the 4th International Conference on Independent Component Analysis and Blind Signal Separation (ICA ’03), pp. 81–986, Nara, Japan, April 2003.
    [10] D.-T. Pham, Ch. Servi`ere, and H. Boumaraf, “Blind separation of speech mix-tures based on nonstationarity,” in Proceedings of 7th International Symposium on Signal Processing and Its Applications (ISSPA ’03), vol. 2, pp. 73–76, Paris, France, July 2003.
    [11] L. Tong, V. C. Soon, Y. F. Huang, and R. Liu. “AMUSE: a new blind identifica-tion algorithm.” IEEE International Symposium on Circuits and Systems, 1990, New Orleans, LA, USA, May 1-3, 1990. Vol.3, Page: 1784-1787.
    [12] Seungjin Choi, Shun-ichi Amari, Andrzej Cichocki, and Ruey-wen Liu. “Natural gradient learning with a nonholonomic constraint for blind deconvolution of multiple channels.” Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation (ICA'99), Aussois, France, January 11-15, 1999. Page: 371-376.
    [13] Hao Shen and Knut Hüper “Newton-like methods for parallel independent com-ponent analysis.” Proceedings of the 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, 2006.September 2006 Page: 283-288.
    [14] A. Hyvärinen, “Fast and robust fixed-point algorithms for independent compo-nent analysis,” IEEE Trans. Neural Netw. Vol.10, No.3, pp. 626-634,1999b.
    [15] A. Hyvärinen, J. Karhunen and E. Oja, Independent Component Analysis Wiley, New York, 2001.
    [16] A.J. Bell and T. J. Sejnowski, “An information-maximization approach to blind separation and blind deconvolution”, Neural Comput., vol. 7, pp. 1129–1159, (1995).
    [17] D. T. Pham. “Joint approximate diagonalization of positive definite hermitian matrices.” SIAM Journal on Matrix Analysis and Applications, Vol:22, No:4, Page:1136-1152, 2001
    [18] Matthias Baeck and Udo Zölzer. “Real-time implementation of a source separa-tion algorithm.” Proceedings of the 6th International Conference on Digital Au-dio Effects (DAFx-03), London, UK, September 8-11, 2003
    [19] Sawada Hiroshi, Araki Shoko, Mukai Ryo, and Makino Shoji. “Blind separation and localization of speeches in a meeting situation.” 40th Asilomar Conference on Signals, Systems and Computers, 2006. ACSSC' 06, Page:1407-1411
    [20] Noboru Murata, Shiro ikeda, and Andreas Ziehe. “An approach to blind source separation based on temporal structure of speech signals.” Proceedings of 1998 International Conference on Artificial Neural Networks (ICANN' 98), Skovde, Sepetember 1998.
    [21] K. Matsuoka. “Minimal distortion principle for blind source separation.” Pro-ceedings of the 41st SICE Annual Conference, August 5-7, 2002. Vol:4, Page:2138-2143
    [22] H. Sawada, R. Muaki, S. Araki, and S. Makino, “A robust and precise method for solving the permutation problem of frequency-domain blind source separa-tion,” IEEE Transactions on Speech and Audio Processing, vol. 12, no. 5, pp. 530–538,2004.
    [23] E. Vincent, C. Fvotte, and R. Gribonval, “Performance measurement in blind audio source separation,” IEEE Trans. Audio, Speech and Language Processing, vol. 14(4), pp. 1462–1469, 2006.
    [24] A. Blin, S. Araki, and S. Makino. Underdetermined blind separation of convolu-tive mixtures of speech using time frequency mask and mixing matrix estimation. IEICE Trans. Fundamentals, E88-A(7):1693–1700, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE