簡易檢索 / 詳目顯示

研究生: 王仲培
Chung-Pei Wang
論文名稱: 高效率雙波段螢光白光有機發光二極體之研製
Fabrication Study of High-efficiency Two-wavelength Fluorescent White Organic Light-emitting Diodes
指導教授: 周卓煇
Jwo-Huei Jou
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 95
語文別: 中文
中文關鍵詞: 雙波段螢光白光有機發光二極體主體材料電洞傳輸材料電子傳輸材料透明導電陽極
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用真空蒸鍍,製備一系列具單一發光層之雙波段螢光白光有機發光二極體(White organic light-emitting diodes,WOLEDs),所製備之WOLEDs,可分為兩部份探討。.
    第一部份:高效率雙波段螢光白光有機發光二極體,分別利用三種不同主體材料:di(4-fluoro-phenyl)amino-di(styryl)biphenyl (DSB)、9,10-di-(2-na-phthyl)-anthracene (ADN)與1-tert-butyl-9,10- bis(2-nap-htyl)-anthracene (BANE),並選用紅光染料4-(dicyano- me-thylene)-2-meth-yl-6-(julolidin-4-yl-vinyl)-4H-pyran (DCM2),所搭配的電洞傳輸材料為N,N’-bis-(1- naphthy)-N,N’di- phenyl-1,1’- biphenyl4-4’-diamine (NPB),電子傳輸材料為1,3,5- tris(N-phenyl- benzimidazol-2-yl)benzene (TPBi);利用溶劑預溶混合主、客體發光材料,再將乾燥所得之混合物作為蒸鍍源,所得WOLEDs元件結構依序為透明導電陽極ITO(1250 Å)/電洞傳輸層NPB(450 Å)/發光層(250 Å)/電子傳輸層TPBi(400 Å)/電子注入層LiF(8 Å)/陰極Al(1500 Å);當以DSB為主體材料,DCM2摻雜濃度為0.15 wt%時,所得的雙波段泛白光元件中,在亮度為100 cd/m2時,發光效率最大可達14.8 lm/W或15.6 cd/A,其CIE色座標為(0.424, 0.441),元件最大發光亮度可達24,600 cd/m2;獲此高效率的原因可歸因為:一、高效率藍綠光DSB主體材料之選擇,二、具有高Förster能量轉移效率之主、客體發光系統,可使電子-電洞產生之激態能量,有效轉移給客發光分子;三、能階適當之元件設計,使電洞、電子容易注入發光層,進而被侷限於單一發光層中,增加發光效率。
    第二部份:可撓式高效率白光有機發光二極體,選用PES做為可撓式OLEDs基材,這是因為PET之表面粗糙度大於PES,而表面粗糙度是影響元件表現的重要因素,再利用磁控濺鍍法於PES上製備透明導電陽極ITO,並於ITO與PES之間鍍製不同厚度之SiO2薄膜,以降低表面粗糙度,其SiO2薄膜最佳厚度為150 Å,ITO電阻率為3.9 × 10-4 Ω-cm,Rms為14 ± 1 Å。元件結構為PES/SiO2(150Å)/ITO (500Å)/NPB(500 Å)/發光層 (350 Å)/TPBi (400 Å)/LiF (8 Å)/Al (1500 Å),ITO鍍製溫度為200℃,可在廣義白光範圍得到最大亮度為9,000□cd/m2,最大發光效率為13.2 lm/W,在元件亮度為100 cd/m2時,其CIE色座標為(0.391, 0.438)。獲此高效率的原因可歸因為:一、最適化之SiO2薄膜厚度(150 Å)以降低PES表面粗糙度,二、高溫鍍製(200℃)ITO薄膜,具有最佳之導電性質。


    目錄 獻…..……………………………………………………………………Ⅰ 摘要.………….…………………………………………………………Ⅱ 致謝.……..…………..…………………………………….……………Ⅲ 目錄…..…………………………………………………………………VI 表目錄.……………….…………………………………………………..Ⅹ 圖目錄.……….…………………………………………………………..ⅩI 壹、 緒論..……………………………………………………………..…1 貳、 文獻回顧..………………………………………………………......4 2-1、有機發光二極體的歷史發展…………………….. .…….…...4 2-2、發光原理……………………………………………………...10 2-3、有機發光材料之演進…………….…………………………..15 2-4、可撓式基材之發展…………………….…..............................21 2-5、可撓式有機發光二極體…………………….…......................24 2-6、白光有機發光二極體之發展………………………….….....26 2-6-1、單層發光白光元件…………………………………......27 2-6-2、積層發光白光元件…………………………………......32 參、 實驗方法..…………………………………………………………38 3-1、材料……..…..…………………………………….………….38 3-2、透明導電陽極及SiO2薄膜之製備………….………………39 3-3、可撓式基材粗糙度與電性量測………….……………….....40 3-3-1、原子力顯微鏡………….…………………………………..40 3-3-2、霍爾效應量測儀………….………………………………..40 3-4、蒸鍍裝置……………...……………………………..……….41 3-5、蒸鍍速率之測定與校正.….………………………………....41 3-6、蒸鍍源之製備..………………………………………………43 3-7、基材清洗…….....…………….……………………………....43 3-8、元件之電路設計…………….….…………………………....44 3-9、元件電流、電壓與亮度特性量測.………………………....44 3-10、發光效率之計算…….……………………………………....45 3-11、電致發光光譜(electroluminescent spectra)量測….…....46 3-12、光激發光光譜(photoluminescent spectra)量測….……..46 3-13、紫外光吸收光譜(ultraviolet visible, UV-vis)量測….….46 肆、 結果與討論……………………………………………………47 4-1 藍光有機發光二極體…….….……………………………….47 4-1-1主體材料之特性分析……………………………………47 4-1-2、藍光有機發光二極體之製備…………………………...48 4-1-3、元件電壓對電流密度之影響…………………………...49 4-2、雙波段白光有機發光二極體………………………………...49 4-2-1、元件結構及鍍膜參數………………………………….49 4-2-2、主體材料對元件發光效率之影響……………………...50 4-2-3、元件電壓對電流密度之影響…………………………..51 4-2-4、元件之能階……………………………………………...51 4-2-5、Förster能量轉移……………………………………......52 4-2-6、高效率白光OLEDs………………………………….....53 4-2-7、高效率白光OLEDs之電致發光光譜………………….54 4-3、高效率可撓式白光OLEDs…………………………………..55 4-3-1、可撓式基材對OLEDs之影響……………….…………55 4-3-2、可撓式基材粗糙度對透明導電陽極之影響…………...55 4-3-3、SiO2薄膜厚度對可撓式白光有機發光二極體之影響……………………………………………………………….56 4-3-4、ITO鍍製溫度對電性之影響……………………………57 4-3-5、元件結構及鍍膜參數…………………………………...58 4-3-6、元件之亮度-電壓-電流密度關係……………………....59 4-3-7、元件發光效率……………….…………………………60 4-3-8、元件之CIE色座標……………………………………...60 4-3-9、元件之電致發光光譜………………….…….…………61 伍、結論…………………………………………………….…………..62 陸、參考資料……………………………………………………………64 柒、表與圖……………………………………………………………...72

    陸、參考資料
    [1] H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park, K. Lee, Adv. Mater. 2002, 14, 1275.
    [2] J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Appl. Phys. Lette. 2004, 85, 3450.
    [3] J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
    [4] Z. Shen, P. E. Burrows, V. Bulović, S. R. Forrest, M. E. Thompson, Science 1997, 276, 2009.
    [5] M. Ricks, M. Boroson, J. Ludwicki, A. Arnold, Society for Information Display 2005, Boston, USA, 2005, p. 826.
    [6] A. R. Duggal, J. J. Shiang, C. M. Heller, D. F. Foust, Appl. Phys. Lett. 2002, 80, 3470.
    [7] B. W. D’Andrade, R. J. Holmes, S. R. Forrest, Adv. Mater. 2004, 16, 624.
    [8] B. W. D’Andrade, S. R. Forrest, Adv. Mater. 2004, 16, 1585.
    [9] S. R. Forrest, Organic Electronics, 2003, 4, 45.
    [10] R. C. Kwong, S. Lamansky, M. E. Thompson, Adv. Mater. 2000, 12, 1134.
    [11] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett. 2001, 79, 156.
    [12] Z. Y. Xie, L. S. Hung, S. T. Lee, Appl. Phys. Lett. 2001, 79, 1048.
    [13] F. Nüesch, D. Berner, E. Tutiš, M. Schaer, C. Ma, X. Wang, B. Zhang, L. Zuppiroli, Adv. Funct. Mater. 2005, 15, 323.
    [14] M. Pope, C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Second Edition, Oxford University Press, New York, 1999.
    [15] T. C. Gorjanc, D. Leong, and C. Py, D. Roth, Thin Solid Films 2002, 413, 181.
    [16] H. Lim, W. J. Cho, C. S. Ha, S. Ando, Y. K. Kim, C. H. Park, and K. Lee, Adv. Mater. 2002, 14, 1275.
    [17] A. Bernanose, M. Conet, and P. Vouauzx, J. Chem. Phys. 1953, 50, 64.
    [18] P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 1963, 38, 2042.
    [19] W. Helfrich and W. G. Schneider, Phys. Rev. Lett. 1965, 14, 229.
    [20] W. Helfrich and W. G. Schneider, J. Chem. Phys. 1966, 44, 2902.
    [21] D. F. Williams and M. Schadt, Proc. IEEE 1970, 58, 476.
    [22] P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Robert, Thin Solid Films 1982, 94, 171.
    [23] R. H. Patridge, Polymer 1983, 24, 733.
    [24] C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
    [25] S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Pat. 1988, No. 4,720,432.
    [26] C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
    [27] J. H. Burroughs, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 1990, 347, 539.
    [28] R. H. Friend, J. H. Burroughes, and D. D. Bradley, US. Pat. 1993, No. 5,247,190.
    [29] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 1988, 27, L713.
    [30] M. Era, C. Adachi, T. Tsutsui, and S. Saito, Chem. Phys. Lett. 1991, 178, 488.
    [31] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 1992, 61, 761.
    [32] J. Kido, M. Kimura, and K. Nagai, Science 1995, 267, 1332.
    [33] J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett. 1995, 67, 2281.
    [34] J. Shi and C. W. Tang, Appl. Phys. Lett. 1997, 70, 1665.
    [35] G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Appl. Phy. Lett. 1998, 73, 1185.
    [36] J. Kido and T. Mizukami, US. Pat. 2000, No. 6,013,384.
    [37] N. C. Greenham, R. H. Friend, A. R. Brown, D. D. C. Bradley, K. Pichler, P. L. Burns, A. Kraft, and A. B. Holmes, Proc. SPIE 1994, 1910, 84.
    [38] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 1998, 395,151.
    [39] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 2001, 90,5048.
    [40] Y. Shao and Y. Yang, Appl. Phy. Lett. 2005, 86, 073510.
    [41] A. Dodabalapur and Bell Lab., Solid State Com. 1997, 102, 259.
    [42] S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 1.
    [43] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 1998, 83, 4928.
    [44] T. Förster, Ann. Phys. 1948, 6, 55.
    [45] D. L. Dexter, J. Chem. Phys. 1953, 21, 836.
    [46] M. A. Lampert and P. Mark, Current Injection in Solids 1970, New York, Academic Press.
    [47] S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers 1997, Chap 8.
    [48] S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers 1997, Chap 9.
    [49] J. Yang and J. Shen, J. Appl. Phys. 1998, 84, 2105.
    [50] Z. Liu and J. Pinto, J. Soaves, E. Pereira, Synth. Metals 2001, 122, 177.
    [51] K. A. Higginson, X. Zhang, and F. Padaimitrakoppulos, Chem. Mater. 1998, 10, 1017.
    [52] S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 1996, 69, 2160.
    [53] G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata, and Z. H. Kafafi, Appl. Phys. Lett. 1999, 75, 766.
    [54] C. Giebeler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, J. Appl. Phys. 1999, 85, 608.
    [55] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 1994, 64, 815.
    [56] L. Do, E. Ham, N. Yamamoto, and M. Fujihira, Mol. Cryst. Liq.Cryst. 1993, 280, 373.
    [57] C. Hosokawa, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 62, 1993, 3238.
    [58] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 1993, 63, 2627.
    [59] J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 1994, 64, 815.
    [60] S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 1996, 69, 2160.
    [61] K. Chondroudis and D. B. Mitzi, Appl. Phys. Lett. 2000, 69, 58.
    [62] C. H. Chen, Chemistry(The Chinese Chem. Soc., Taipei)1996, 54, 125.
    [63] Y. Shirota, Y. Kuwabara, and H. Inada, Appl. Phys. Lett. 1994, 65, 807.
    [64] C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lette. 1995, 66, 2679.
    [65] Y. Sato, S. Ichinosawa, and H. Kanai, IEEE Journal of Selected Topics in Quantum Electronics 1998, 4, 40.
    [66] Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, and K.Shibata, Appl. Phys. Lett. 1997, 71, 3338.
    [67] D. G. Ma, G. Wang, Y. F. Hu, Y. G. Zhang, L. X. Wang, X. B. Jing, and F. S. Wang, Appl. Phys. Lett. 2003, 82, 1296.
    [68] L. S. Hung and C. W. Tang, US. Pat. 1997, No. 5,677,572.
    [69] M. A. Baldo, D. F. Brlen, and S. R. Forrect, US. Pat. 2000, No. 6,097,147.
    [70] F. Li and H. Tang, Appl. Phy. Lett. 1997, 70,1233.
    [71] 田宏隆, 電子與材料雜誌, 2004, 21, 50.
    [72] F. L. Wong, M. K. Fung, S. W. Tong, C. S. Lee and S. T. Lee, Thin Solid Films, 2004 466, 225.
    [73] Y. Yang, Q. Huang, A. W. Metz, J. Ni, S. Jin, T. J. Marks, M. E. Madsen, A. DiVenere, and S. T. Ho, Adv. Mater. 2004, 16, 321.
    [74] Y. Li, L. W. Tan, X. T. Hao, K. S. Ong and F. Zhua and L. S. Hung, Appl. Phy. Lett. 2005, 86,153508-1.
    [75] A. Mikami, T. Koshiyama and T. Tsubokawa, J. J. Appl. Phys. 2005, 44, 608.
    [76] Commission Internationale de L’eclairage (CIE), Colorimetry, Publication Report No. 15.2, 1986.
    [77] B. W. D’Andrade, R. J. Holmes, and S. R. Forrest, Adv. Mater. 2004, 16, 624.
    [78] J. H. Jou, Y. S. Chiu, R. Y. Wang, C. P. Wang, Y. C. Huang, C. S. Lin, C. H. Cheng, and C. I. Chao, International Display Manufacturing Conference and Exhibition 2005.
    [79] J. H. Jou, Y. S. Chiu, R. Y. Wang, H. C. Hu, C. P. Wang, and H. W. Lin, Organic Electronics 2005, 7, 8.
    [80] S. Naka, K. Shinno, and H. Anada, Electron. Trans. IEICE 1997, 80, 1114.
    [81] 林瑋哲, 碩士論文, 國立清華大學材料科學工程研究所, 2004.
    [82] J. T. Lim, M. J. Lee, N. H. Lee, Y. J. Ahn, C. H. Lee, and D. H. Hwang, Curre. Appl. Phys. 2004, 4, 327-330.
    [83] C. H. Chuen, Y. T. Tao, F. I. Wu, and C. F. Shu, Appl. Phys. Lett. 2004, 85, 4609.
    [84] G. Lei, L. Wang, and Y. Qiu, Appl. Phys. Lett. 2004, 85, 5403.
    [85] J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, and H. C. Hu, Appl. Phys. Lett. , 2006, 88, 193501.
    [86] R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, Appl. Phys. Lett. 1996, 68, 1192.
    [87] S. R. Forrest, R. S. Desphande, and V. Bulovic, Appl. Phys. Lett. 1999, 75, 888.
    [88] Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, Appl. Phys. Lett. 2002, 80, 2782.
    [89] G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee, Appl. Phys. Lett. 2003, 82, 4224.
    [90] Y. F. Zhang, G Cheng, Y. Zhao, J. Y. Hou, and S. Y. Liu, Appl. Phys. Lett. 2005, 86, 011112.
    [91] J. Kido, Organic Electroluminescence Material and Display, 2001, Chap17.
    [92] J. Kido, Organic Electroluminescence Material and Display, 2001, Chap 23.
    [93] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, and J. Shen, Appl. Phys. Lett. 2003, 83, 4716.
    [94] G. Li and J. Shinar, Appl. Phys. Lett. 2003, 83, 5359.
    [95] S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, Appl. Phys. Lett. 2003, 83, 2459.
    [96] G. Cheng, Y. Zhao, Y. Zhang, S. Liu, F. He, H. Zhang, and Y. Ma, Appl. Phys. Lett. 2004, 84, 4457.
    [97] T. S. Liu, Y. S. Wu, M. T. Lee, H. H. Chen, C. H. Liao, and C. H. Chen, Appl. Phys. Lett. 2004, 85, 4304
    [98] D. Qin and Y. Tao, Appl. Phys. Lett. 2005, 86, 113507.
    [99] M. Pope and C. E. Swenberg, Electronic Process in Organic Crystals and Polymers, Second Edition, Oxford University Press, New York, 1999.
    [100] W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
    [101] V. Bulovic, A. Shoustikov, M. A. Baldo, E. Bose, V. G.Kozlov, M. E. Thompson, and S. R. Forrest, Chem. Phys. Lett. 1998, 287, 455.
    [102] R. Freudenstein, A. Klett, and W. Kulisch, Thin Solid Films 2001, 398, 217.
    [103] Y. Hu, X. Diao, C. Wang, W. Hao and T. Wang, J. Vacuum 2004, 75, 183.
    [104] 王人仰, 碩士論文, 國立清華大學材料科學與工程研究所, 2005.
    [105] 郭俊頡, 碩士論文, 國立中山大學光電工程研究所, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE