簡易檢索 / 詳目顯示

研究生: 李季恩
Li, Ji-En
論文名稱: 對於顏東勇教授的代數拓樸教材之重新詮釋
A Reinterpretation of Algebraic Topology Course Materials Written by Professor Dung-Yung Yan
指導教授: 顏東勇
Yan, Dung-Yung
口試委員: 王信華
Wang, Shin-Hwa
李華倫
Li, Hua-Lun
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 55
中文關鍵詞: CW-複形胞腔同調胞腔鏈複形邊界函數公式
外文關鍵詞: CW-complexes, cellular homology, cellular boundary formula
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們先介紹一些同調代數的相關知識、CW-複形以及胞腔同調群。接著以顏東勇教授
    的代數拓樸教材為基礎,推導並重新定義出Hn(Xn,Xn−1) 的標準生成元,這些生成元使我
    們可以用比一般課本教材更為精確且具幾何意義的方式,描述胞腔鏈複形邊界函數公式。有
    了函數的degree 之概念後,我們就可以用胞腔鏈複形邊界函數公式來計算一些CW-複形的同
    調群。


    In this thesis, we first go through some facts in homological algebra, CW-complexes, and
    cellular homology groups. Then by the algebraic topology course materials written by professor
    Yan Dung-Yung, we can derive and redefine the canonical generators of Hn(Xn,Xn−1). These
    generators provide a more precise and geometrical way to describe the cellular boundary formula
    than the way in common textbooks. After introducing the concept of degree of a map,
    we compute the homology groups of some CW complexes by cellular boundary formula.

    Contents Abstract (Chinese) I Acknowledgements (Chinese) II Abstract IV Contents V 1 Introduction 1 2 Preliminaries 3 2.1 Settings and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 A quick review on homological algebra . . . . . . . . . . . . . . . . . . . . . . . 3 2.3 CW complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Cellular homology groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 The canonical generators for Hn(Xn,Xn−1) 20 3.1 The canonical generators for Hn(Dn, Sn−1) and Hn−1(Sn−1) . . . . . . . . . . . . 20 3.2 Geometrical interpretation of Hn(Xn,Xn−1) . . . . . . . . . . . . . . . . . . . . 25 3.3 The canonical generators for Hn(Xn/Xn−1) . . . . . . . . . . . . . . . . . . . . 29 4 Cellular boundary formula and its applications 36 4.1 Cellular boundary formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2 Cellular space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Degree of a map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 Computation of homology groups . . . . . . . . . . . . . . . . . . . . . . . . . . 49 References 55

    [1] Maunder, Charles Richard Francis. Algebraic topology, Courier Corporation, 1996.
    [2] Hatcher, Allen. Algebraic topology, 2005.
    [3] Yan, Dung Yung. Lecture note of algebraic topology, National Tsing Hua University, Hsinchu, Taiwan, 2013.
    [4] Peng, Jyun Da. A new geometric description of the boundary map of the cellular homology, National Tsing
    Hua University, Hsinchu, Taiwan, 2015.
    [5] Chen, Jiun Jia. The three-dimensional animation of the geometric description of the boundary map of the
    cellular chain complex, National Tsing Hua University, Hsinchu, Taiwan, 2018.
    [6] Degiorgi, Paolo. Cellular Homology and the Cellular Boundary Formula, 2016.

    QR CODE