研究生: |
鄭琳潔 Cheng, Lin-Chieh |
---|---|
論文名稱: |
銅金屬催化胺、炔、醛氧化環化反應 以合成喹啉鹽類 Cu-Catalyzed Aerobic Oxidation in the Synthesis of Quinolinium Salts from Secondary Amines, Alkynes, Formaldehyde and Acid |
指導教授: |
鄭建鴻
Cheng, Chien-Hong |
口試委員: |
蔡易州
Tsai, Yi-Chou 謝仁傑 Hsieh, Jen Chieh |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 喹啉鹽 、芳香基喹啉鹽 、A3耦合反應 、二級胺 、銅 、氧氣 |
外文關鍵詞: | Quinolinium Salts, N-Aryl Quinolinium Salts, A3-Coupling Reaction, Secondary Amine, Copper, Aerobic Oxidation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
含氮雜環銨鹽可見於自然物與生物活性分子的骨架中,其生物應用的潛力,使得如何有效合成這類化合物成為有趣而重要的課題。本篇研究使用醛、二級胺、炔及酸作為反應起始物,在銅金屬的催化下,合成喹啉鹽類衍生物。反應利用酸誘導生成N,N-雙取代亞胺離子,炔化合物接著進行親核加成反應後氧化生成喹啉鹽。本合成方法條件溫和,反應於室溫進行一小時即可得到高產率之產物。
Substituted heterocyclic nitrogen salts are versatile building blocks for a number of natural products and bioactive motifs. Herein, we report a novel and convenient process to synthesize quinolinium salt derivatives by Cu-catalyzed aerobic oxidative coupling of secondary amine, alkyne and formaldehyde. The reaction proceeds via acid induced N,N-disubstituted iminium ion formation followed by nucleophilic addition of alkyne, annulation, and copper-promoted oxidation. This method features an economical catalyst, one pot process, ambient reaction temperature and short reaction time.
[1] Prakash, S.; Muralirajan, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2016, 55, 1844-1848.
[2] (a) Jayakumar, J.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem. Int. Ed. 2011, 51, 197-200. (b) Muralirajan, K.; Cheng, C.-H. Chem. Eur. J. 2013, 19, 6198-6202. (c) Jayakumar, J.; Parthasarathy, K.; Chen, Y.-H.; Lee, T.-H.; Chuang, S.-C.; Cheng, C.-H. Angew. Chem. Int. Ed. 2014, 53, 9889-9892. (d) Luo, C.-Z.; Jayakumar, J.; Gandeepan, P.; Wu, Y.-C.; Cheng, C.-H. Org. Lett. 2015, 17, 924-927. (e) Luo, C.-Z.; Gandeepan, P.; Wu, Y.-C.; Tsai, C.-H.; Cheng, C.-H. ACS Catal. 2015, 5, 4837-4841. (f) Upadhyay, N.; Jayakumar, J.; Cheng, C.-H. Adv. Synth. Catal. 2016, 358, 3381-3386. (g) Upadhyay, N.; Jayakumar, J.; Cheng, C.-H. Chem. Commun. 2017, 53, 2491-2494.
[3] Parthasarathy, K.; Senthilkumar, N.; Jayakumar, J.; Cheng, C.-H. Org. Lett. 2012, 14, 3478-3481.
[4] Chen, W.-C.; Gandeepan, P.; Tsai, C.-H.; Luo, C.-Z.; Rajamalli, P.; Cheng, C.-H. RSC Adv. 2016, 6, 63390-63397.
[5] (a) Malíková, J.; Zdařilová, A.; Hlobilková, A.; Ulrichová, J. Cell. Biol. and Toxicol. 2006, 22, 439-453. (b) Jana, J.; Mondal, S.; Bhattacharjee, P.; Sengupta, P.; Roychowdhury, T.; Saha, P.; Kundu, P.; Chatterjee, S. Sci. Rep. 2017, 7, 40706. (c) Almeida, I.; Fernandes, L.; Biazi, B.; Vicentini, V. Anticancer Agents Med. Chem. 2017, 17, 1586-1592.
[6] (a) Dhopeshwarkar, A.; Jain, S.; Liao, C.; Ghose, S.; Bisset, K.; Nicholson, R. Eur. J. Pharmacol. 2011, 654, 26-32. (b) Tavares, L.; Zanon, G.; Weber, A.; Neto, A.; Mostardeiro, C.; Da Cruz, I.; Oliveira, R.; Ilha, V.; Dalcol, I.; Morel, A. PLoS ONE 2014, 9, e97000.
[7] Bouquet, J.; Rivaud, M.; Chevalley, S.; Deharo, E.; Jullian, V.; Valentin, A. Malar. J. 2012, 11, 67.
[8] Shindy, H. Dyes Pigm. 2017, 145, 505-513.
[9] Wainwright, M. Dyes Pigm. 2008, 76, 582-589.
[10] Wainwright, M.; Kristiansen, J. Int. J. Antimicrobial Agents 2003, 22, 479-486.
[11] Sánchez-Martín, R.; Campos, J.; Conejo-García, A.; Cruz-López, O.; Báñez-Coronel, M.; Rodríguez-González, A.; Gallo, M.; Lacal, J.; Espinosa, A. J. Med. Chem. 2005, 48, 3354-3363.
[12] Bringmann, G.; Thomale, K.; Bischof, S.; Schneider, C.; Schultheis, M.; Schwarz, T.; Moll, H.; Schurigt, U. Antimicrob. Agents Chemother. 2013, 57, 3003-3011.
[13] Shchepina, N.; Avrorin, V.; Badun, G.; Alexandrova, G.; Agafonova, I.; Popova, N. OJSTA 2014, 03, 21-26.
[14] (a) Iqbal, N.; Hashim, J.; Ali, S.; Mariya al-Rashida, M.; Alharthy, R.; Ahmad, S.; Khan, K.; Basha, F.; Moin, S.; Hameed, A. RSC Adv. 2015, 5, 95061-95072. (b) Singh, P.; Kumar, R.; Singh, A.; Yadav, P.; Khanna, R.; Vinayak, M.; Tewari, A. J. Mol. Struct. 2018, 1163, 262-269.
[15] Katritzky, A. R.; Semenzin, D.; Yang, B.; Pleynet, D. J. Heterocycl. Chem. 1998, 35, 467-470.
[16] (a) Pilyugin, G. T.; Gutsulyak, B. M. Obshch. Khim. 1959, 29, 3076-3079. (b) Pilyugin, G. T.; Gutsulyak, B. M. Russian Chem. Rev. 1963, 32, 167-188. (c) Chernyuk, I.; Pilyugin, G.; Zlochevskaya, A. Chem. Heterocycl. Compd. 1970, 4, 236-237.
[17] Mel’nik, M.; Turov, A.; Novitskii, Z.; Stetskiv, A.; Bodnarchuk, O.; Ganushchak, N. Russ. J. Gen. Chem. 2006, 76, 634-637.
[18] 陳韋禎 (2017)。銠與銅錯合物之催化環化反應:苯並呋喃與喹啉鹽類合成應用。國立清華大學化學研究所博士論文,未出版,台灣。
[19] Xiao, F.-H.; Chen, W.; Liao, Y.-F.; Deng, G.-J. Org. Biomol. Chem. 2012, 10, 8593.
[20] Xu, X.-F.; Liu, W.-M.; Wang, Z.-Q.; Feng, Y.-Q.; Yan, Y.-L.; Zhang, X. Tetrahedron Lett. 2016, 57, 226-229.
[21] Syeda Huma, H.; Halder, R.; Singh Kalra, S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6485-6488.
[22] Cao, K.; Zhang, F.-M.; Tu, Y.-Q.; Zhuo, X.-T.; Fan, C.-A. Chem. Eur. J. 2009, 15, 6332-6334.
[23] Zhang, Y.-C.; Li, P.-H.; Wang, L. J. Heterocycl. Chem. 2010, 48, 153-157.
[24] Li, X.-J.; Mao, Z.-J.; Wang, Y.-U.; Chen, W.-X.; Lin, X.-F. Tetrahedron 2011, 67, 3858-3862.
[25] Zhang, X.; Xu, X.; Yu, L.; Zhao, Q. Asian J. Org. Chem. 2014, 3, 281-284.
[26] Fasano, V.; Radcliffe, J.; Ingleson, M. Organometallics 2017, 36, 1623-1629.
[27] Meyet, C.; Larsen, C. J. Org. Chem. 2014, 79, 9835-9841.
[28] Jiang, K.-M.; Kang, J.-A.; Jin, Y.; Lin, J. Org. Chem. Front. 2018, 5, 434-441.
[29] Vessally, E.; Edjlali, L.; Hosseinian, A.; Bekhradnia, A.; Esrafili, M. RSC Adv. 2016, 6, 49730-49746.
[30] (a) Patil, R.; Adimurthy, S. Adv. Synth. Catal. 2011, 353, 1695-1700. (b) Zhang, G.; Ma, Y.-X.; Wang, S.-L.; Zhang, Y.-H.; Wang, R. J. Am. Chem. Soc. 2012, 134, 12334-12337. (c) Cheng, H.-C.; Hou, W.-J.; Li, Z.-W.; Liu, M.-Y.; Guan, B.-T. Chem. Commun. 2015, 51, 17596-17599. (d) Xu, B.; Hartigan, E.; Feula, G.; Huang, Z.; Lumb, J.; Arndtsen, B. Angew. Chem. Int. Ed. 2016, 55, 15802-15806. (e) Xu, J.-F.; Hu, H.-Y.; Liu, Y.; Wang, X.; Kan, Y.-H.; Wang, C. Eur. J. Org. Chem. 2017, 2, 257-261.
[31] Wang, T.; Schrempp, M.; Berndhäuser, A.; Schiemann, O.; Menche, D. Org. Lett. 2015, 17, 3982-3985.
[32] Taneda, H.; Inamoto, K.; Kondo, Y. Chem. Commun. 2014, 50, 6523-6525.
[33] Liang, R.; Li, S.; Wang, R.-L.; Lu, L.; Li, F. Org. Lett. 2017, 19, 5790-5793.
[34] Michael, J. Nat. Prod. Rep. 2008, 25, 166-187.
[35] (a) Capell, B.; Olive, M.; Erdos, M.; Cao, K.; Faddah, D.; Tavarez, U.; Conneely, K.; Qu, X.; San, H.; Ganesh, S.; Chen, X.; Avallone, H.; Kolodgie, F.; Virmani, R.; Nabel, E.; Collins, F. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 15902-15907. (b) Cheng, P.; Zhang, Q.; Ma, Y.-B.; Jiang, Z.-Y.; Zhang, X.-M.; Zhang, F.-X.; Chen, J.-J. Bioorganic Med. Chem. Lett. 2008, 18, 3787-3789. (c) Kraus, J.; Tatipaka, H.; McGuffin, S.; Chennamaneni, N.; Karimi, M.; Arif, J.; Verlinde, C.; Buckner, F.; Gelb, M. J. Med. Chem. 2010, 53, 3887-3898.