簡易檢索 / 詳目顯示

研究生: 江宗韋
Chiang, Tsung-Wei
論文名稱: 適用於感知無線電中多重訊窗頻譜估測器之最佳化偵測器設計
Optimal Detector for Multitaper Spectrum Estimator in Cognitive Radios
指導教授: 馬席彬
Ma, Hsi-Pin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 125
中文關鍵詞: 頻譜掃描感知無線電最佳化偵測器多重訊窗頻譜估測器Slepian序列多重訊窗
外文關鍵詞: Spectrum sensing, Cognitive Radios, Optimal detector, Thomson's multitaper spectral estimation (MTSE), Slepian sequences, Multitaper (Multiwindow)
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在論文中,作者設計了一個適用於感知無線電中多重訊窗頻譜估測器之最佳化偵測器。所提出的最佳偵測器主要是要解決Thomson[1]的多重訊窗頻譜估測器在感知無線電中執行頻譜掃描(spectrum sensing)應用時的缺陷與不足之處。感知無線電要執行頻譜掃描時,多重訊窗頻譜估測器會先用來執行頻譜估測,接著所提出的偵測器用來檢測空閒的頻段以及擁有使用頻段的執照擁有者。那些被偵測出的空閒頻段可以提供感知無線通訊使用者來通訊,如此,可以使得整個頻譜資源獲得更有效的使用。

    所提出來的偵測器是根據Neyman-Pearson規範去找出最佳化的設計。對於此偵測器而言,它的偵測效能理論值在數學上被完整的推導出來,並且透過電腦數值模擬獲得一致性結果驗證。另外,所提出來適用於多重訊窗頻譜估測器之最佳化偵測器不需透過合作式的偵測機制就可以達到可靠的偵測效能。相較於傳統的能量式偵測器[2],在執行頻譜偵測時,所提出來的偵測器可以透過(多重)不同的Slepian訊窗達到更佳的偵測率與更好的強健性。對偵測效能而言,比起合作式自相關機制的偵測器[3],所提出的偵測器高出大約48%的偵測率並且在訊雜比上擁有3dB的增益。最後,所提出適用於感知無線電中多重訊窗頻譜估測器之最佳化偵測器,對於最少所需要的觀察樣本數方面,比起能量式偵測器節省了約73.3%的觀察樣本數,即可達到相同的偵測效能。


    In this thesis, the author proposes an optimal detector for the Thomson’s multitaper spectral estimation (MTSE) [1] in cognitive radios for spectrum sensing. The MTSE is used for
    spectral estimation and then the proposed detector can detect primary users and spectrum holes for secondary users in cognitive radios. This proposed detector is designed and optimized based on the Neyman-Pearson Theorem. The analytical detection performance (probability of detection) of detecting primary users (PUs) and spectrum holes in spectrum sensing is mathematically formulated, studied, and verified by simulations. The proposed detector for the MTSE is non-cooperative in spectrum sensing and can perform blind spectrum sensing without prior knowledge of the primary users. Compared to the conventional energy detector
    [2], the proposed detector is more reliable and robust for various multiple Slepian tapers. The proposed detector outperforms the cooperative autocorrelation-based detectors [3] in detection rate by 48%and with 3dB gain in SNR performance. Moreover, the minimumrequired observation size is smaller than the conventional energy detector by a reduction of 73.3%.

    1 Introduction 1 1.1 Cognitive Radios and Spectrum Sensing . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Physical Layer Spectrum Sensing 9 2.1 Matched-filter Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Theoretical Performance Analysis . . . . . . . . . . . . . . . . . . . 10 2.2 Energy Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Theoretical Performance Analysis . . . . . . . . . . . . . . . . . . . 12 2.3 Autocorrelation-Based Detection . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Theoretical Performance Analysis: Without Cooperation . . . . . . . 15 2.3.2 Theoretical Performance Analysis: With Cooperation . . . . . . . . . 16 2.4 Waveform-Based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 Theoretical Performance Analysis: Pilot Detection . . . . . . . . . . 18 3 Nonparametric Spectral Analysis 21 3.1 Background: From Periodogram to Multi-taper Spectral Estimation . . . . . 21 3.2 The Fundamental Equation of Spectrum Estimation . . . . . . . . . . . . . . 24 3.3 Discrete Prolate Spheroidal Sequences (DPSSs) . . . . . . . . . . . . . . . . 28 3.4 Multiple-taper Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.1 Multitaper Spectral Estimation (MTSE): Averaged Spectrum . . . . . 32 3.4.2 AdaptiveMultitaper Spectral Estimation (AMTSE): AdaptiveWeighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Proposed Spectrum Sensing Unit in Cognitive Radios 37 4.1 Neyman-Pearson Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Proposed Optimal Detector for The MTSE . . . . . . . . . . . . . . . . . . . 41 4.4 Analytical Performance Derivation of the Proposed Detector . . . . . . . . . 44 4.4.1 Typical MTSE Case . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.2 Adaptive MTSE Case . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 Performance Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.7 Complexity Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.8 Noise Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5 Simulation Results of the Proposed Detector 71 5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 Spectrum Sensing for Multiuser Mobile MIMO-OFDMA Communications . 72 5.2.1 System Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 The Leakage Problem . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2.3 Proposed Solutions for The Leakage Problem . . . . . . . . . . . . . 80 5.2.4 Simulation Results of the Multiuser Mobile MIMO-OFDMA Cognitive Communication System . . . . . . . . . . . . . . . . . . . . . . 81 5.2.5 Remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6 Conclusions and Future Works 87 6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

    [1] D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc. IEEE, vol. 20, pp.
    1055–1096, Sep. 1982.
    [2] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Englewood
    Cliffs, NJ: Prentice-Hall PTR, 1998.
    [3] S. Chaudhari, V. Koivunen, and H. V. Poor, “Distributed autocorrelation-based sequential
    detection of OFDM signals in cognitive radios,” in Proc. IEEE CrownCom ’07,
    Singapore, May 2008, pp. 1–6.
    [4] J. Mitola, “Software radios: Survey, critical evaluation and future directions,” IEEE
    Aerosp. Electron. Syst. Mag., vol. 8, pp. 25–36, Apr. 1993.
    [5] ——, “The software radio architecture,” IEEE Commun. Mag., vol. 33, pp. 26–38, May
    1995.
    [6] ——, “Software radio architecture: a mathematical perspective,” IEEE J. Sel. Areas
    Commun., vol. 17, pp. 514–538, Apr. 1999.
    [7] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,”
    IEEE Personal Commun. Mag., vol. 6, pp. 13–18, Aug. 1999.
    [8] J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in Proc.
    IEEE MoMuC ’99, Nov. 1999, pp. 3–10.
    [9] ——, “Cognitive radio: An integrated agent architecture for software defined radio,”
    PHD dissertation, KTH, Royal Inst. of Technol., Stockholm, Sweden, May 2000.
    [10] ——, “Cognitive radio architecture evolution,” Proc. IEEE, vol. 97, pp. 626–641, Apr.
    2009.
    [11] ——, “Cognitive INFOSEC,” in Proc. IEEE MTT-S ’03, vol. 2, Jun. 2003, pp. 8–13.
    [12] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel.
    Areas Commun., vol. 23, no. 3, pp. 201–205, Feb. 2005.
    [13] D. Cabric, “Cognitive radios: system design perspective,” PHD dissertation, University
    of California, Berkeley, California, USA, 2007.
    [14] FCC, “Spectrum Policy Task Force,” Tech. Rep. ET Docket, no. 02-135, Nov. 2002.
    [15] ——, “Notice of proposed rule making and order,” Tech. Rep. ET Docket, no. 03-322,
    Dec. 2003.
    [16] ——, “Cognitive radio technologies proceeding,” Tech. Rep. ET Docket, no. 03-108,
    Dec. 2003.
    [17] R. Tandra, A. Sahai, and S. M. Mishra, “What is a spectrum hole and what does it take
    to recognize one?” Proc. IEEE, vol. 97, pp. 824–848, May 2009.
    [18] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc.
    IEEE, vol. 97, pp. 849–877, May 2009.
    [19] B. H. Juang, G. Y. Li, and M. Jun, “Signal processing in cognitive radio,” Proc. IEEE,
    vol. 97, pp. 805–823, May 2009.
    [20] D. Cabric and R. W. Brodersen, “Physical layer design issues unique to cognitive radio
    systems,” in Proc. IEEE PIMRC ’05, vol. 2, Berlin, Germany, Sep. 2005, pp. 759–763.
    [21] M. Shafi, L. J. Greenstein, and A. F. Molisch, “Propagation issues for cognitive radio,”
    Proc. IEEE, vol. 97, pp. 787–804, May 2009.
    [22] T. Ikuma and M. Naraghi-Pour, “A comparison of three classes of spectrum sensing
    techniques,” in Proc. IEEE GLOBECOM ’08, New Orleans, LO, Nov. 2008, pp. 1–5.
    [23] H. V. Poor, An Introduction to Signal Detection and Estimation. Berlin, Germany:
    Springer-Verlag, 1994, 2nd ed.
    [24] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc. IEEE, vol. 55,
    pp. 523–531, Sep. 1967.
    [25] A. Sonnenschein and P. M. Fishman, “Radiometric detection of spread-spectrum signals
    in noise of uncertain power,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, pp. 654–660,
    Jul. 1992.
    [26] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Spectrum sensing measurements of
    pilot, energy, and collaborative detection,” in Proc. IEEE MILCOM ’06, Washington,
    DC, Oct. 2006, pp. 1–7.
    [27] R. Tandra and A. Sahai, “Fundamental limits on detection in low snr under noise uncertainty,”
    in Proc. IEEE Wireless Networks, Commun. and Mobile Computing Conf.,
    vol. 1, Maui, HI, June 2005, pp. 464–469.
    [28] ——, “SNR walls for signal detection,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 1,
    pp. 4–17, Feb. 2008.
    [29] Y. Zeng and Y. C. Liang, “Covariance based signal detections for cognitive radio,” in
    Proc. IEEE DySPAN ’07, Dublin, Ireland, 2007, pp. 202–207.
    [30] T. Ikuma andM. Naraghi-Pour, “Autocorrelation-based spectrum sensing algorithms for
    cognitive radios,” in Proc. IEEE ICCCN ’08, Dublin, Ireland, Aug. 2008, pp. 1–6.
    [31] S. Chaudhari, J. Lunden, and V. Koivunen, “Collaborative autocorrelation-based spectrum
    sensing of OFDM signals in cognitive radios,” in Proc. IEEE ICIS ’08, Princeton,
    USA, Mar. 2008, pp. 19–21.
    [32] H. Tang, “Some physical layer issues of wide-band cognitive radio systems,” in Proc.
    IEEE DySPAN ’05, Baltimore, MD, USA, Nov. 2005, pp. 151–159.
    [33] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum
    sensing for cognitive radios,” in Proc. IEEE 38th Signals, Systems and Computers Conf.,
    vol. 1, Pacific Grove, California, Nov. 2004, pp. 772–776.
    [34] W. A. Gardner, “Signal interception: a unifying theoretical framework for feature detection,”
    IEEE Trans. Commun., vol. 36, pp. 897–906, Aug. 1988.
    [35] W. A. Gardner and C. M. Spooner, “Signal interception: performance advantages of
    cyclic-feature detectors,” IEEE Trans. Commun., vol. 36, pp. 149–159, Jan. 1992.
    [36] S. A. Jafar, S. Srinivasa, I. Maric, and A. Goldsmith, “Breaking spectrum gridlock with
    cognitive radios: An information theoretic perspective,” Proc. IEEE, vol. 97, pp. 894–
    914, May 2009.
    [37] K. H. Chen and T. D. Chiueh, “A 1.8V 165mW discrete wavelet multitone baseband receiver
    for cognitive radio applications,” in Proc. IEEE ISSCC ’07, San Francisco, USA,
    Feb 2007, pp. 578–623.
    [38] D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty - V:
    The discrete case,” Bell Syst. Tech. J., vol. 57, pp. 1371–1429, 1978.
    [39] B. Farhang-Boroujeny, “Filter bank spectrum sensing for cognitive radios,” IEEE Trans.
    Signal Process., vol. 56, no. 5, pp. 1801–1811, May 2008.
    [40] B. Farhang-Boroujeny and R. Kempter, “Multicarrier communication techniques for
    spectrum sensing and communication in cognitive radios,” IEEE Commun.Mag., vol. 46,
    no. 4, pp. 80–85, Apr. 2008.
    [41] T. Yucek and H. Arslan, “Spectrum characterization for opportunistic cognitive radio
    systems,” in Proc. IEEE MILCOM ’06, Washington, DC, Oct. 2006, pp. 1–6.
    [42] D. J. Thomson, “Multitaper analysis of nonstationary and nonlinear time series data,” in
    Nonlinear and Nonstationary Signal Processing, W. Fitzgerald, R. Smith, A. Walden,
    and P. Young, Eds. London,U.K.: Cambridge University Press, 2000, pp. 317-394.
    [43] A. Hero, H. Messer, J. Goldberg, D. J. Thomson,M. G. Amin, G. Giannakis, A. Swami,
    J. K. Tugnait, A. Nehorai, A. L. Swindlehurst, J. F. Cardoso, L. Tong, and J. Krolik,
    “Highlights of statistical signal and array processing,” IEEE Signal Process. Mag.,
    vol. 15, pp. 21–64, Sep. 1998.
    [44] R. Onn and A. O. Steinhardt, “Multi-window spectrum estimation - A linear algebraic
    approach,” Int. J. Adaptive Contr., Signal Processing, vol. 7, pp. 103–116, 1993.
    [45] P. Stoica and T. Sundin, “On nonparametric spectral estimation,” Circuits, Syst., Signal
    Process., vol. 18, pp. 169–181, 1999.
    [46] S. Haykin, “The multitaper method for accurate spectrum sensing in cognitive radio
    environments,” in Proc. IEEE ACSSC ’07, Nov. 2007, pp. 436–439.
    [47] T. Erpek, A. Leu, and B. L. Mark, “Spectrum sensing performance in TV bands using
    the multitaper method,” in Proc. IEEE 15th Signal Processing and Communication
    Applications Conf., Eskisehir, Turkey, Jun. 2007, pp. 1–4.
    [48] A. Eberhard, “An optimal discrete window for the calculation of power spectra,” IEEE
    Trans. Audio Electroacoust., vol. 21, no. 1, pp. 37–43, Feb. 1973.
    [49] A. T. Walen, “Improved low-frequency decay estimation using the multitaper spectral
    analysis method,” Geophysical Prospecting, vol. 38, pp. 61–86, 1990.
    [50] J. M. Lin and H. P. Ma, “A baseband transceiver for IEEE 802.16e-2005 MIMOOFDMA
    uplink communications,” in Proc. IEEE GLOBECOM ’07, Nov. 2007, pp.
    4291–4295.
    [51] F. Digham, M. Alouini, and M. Simon, “On the energy detection of unknown signals
    over fading channels,” in Proc. IEEE ICC ’03, vol. 5, Seattle, Washington, USA, May
    2003, pp. 3575–3579.
    [52] A.Wald, “Sequential test of statistical hypotheses,” Ann. Math Statist., vol. 16, pp. 117–
    186, Jun. 1945.
    [53] A. Schuster, “On the investigation of hidden periodicities with application to a supposed
    26 day period of meteorological phenomena,” Terrestrial Magnetism and Atmospheric
    Electricity, vol. 3, pp. 13–41, 1898.
    [54] M. S. Bartlett, “Smoothing periodograms from time series with continuous spectra,”
    Nature, vol. 161, pp. 686–687, May 1948.
    [55] R. B. Blackman and J.W. Tukey, The Measurement of Power Spectra. New York, USA:
    Dover, 1958.
    [56] F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier
    transform,” Proc. IEEE, vol. 66, no. 1, pp. 51–83, Jan. 1978.
    [57] P. D. Welch, “The use of FFT for the estimation of power spectra: A method based on
    time averaging over short modified periodograms,” IEEE Trans. Audio Electroacoust.,
    vol. 15, pp. 70–73, Jun. 1967.
    [58] T. P. Bronez, “On the performance advantage of multitaper spectral analysis,” IEEE
    Trans. Signal Process., vol. 40, no. 12, pp. 2941–2946, Dec. 1992.
    [59] J. Park, C. R. Lindberg, and F. L. Vernon, “Multitaper spectral analysis of highfrequency
    seismograms,” Journal of Geophysical Research, vol. 92, pp. 12 675–12 684,
    1987.
    [60] S. Haykin and A. Steinhardt, Adaptive Radar Detection and Estimation. New York,
    USA: Wiley-Interscience, 1992.
    [61] M. Loeve, Probability Theory. New York, USA: Van Nostrand, 1963.
    [62] T. Kawata, “Representation of a function by the fourier-stieltjes integral,” Annals of the
    Institute of Statistical Mathematics, vol. 1, no. 2, pp. 131–139, Sep. 1949.
    [63] S. Slepian, “David Slepian Memorial,” http://donslepian.com/DavidSlepian/.
    [64] IEEE, “David Slepian, 1923,” http://www.ieee.org/web/aboutus/history center/biography/slepian.html.
    [65] J. E. Brittain, “Joseph Slepian,” Proc. IEEE, vol. 97, no. 4, pp. 774–776, Apr. 2009.
    [66] F. A. Furfari, “Joseph Slepian-scientist, engineer, inventor,” IEEE Ind. Appl. Mag.,
    vol. 6, no. 6, pp. 14–19, Nov. 2000.
    [67] ——, “Joseph Slepian, part II-1947 IEEE edison medallist,” IEEE Ind. Appl. Mag.,
    vol. 7, no. 1, pp. 9–13, Jan. 2000.
    [68] J.Mercer, “Functions of positive and negative type, and their connection with the theory
    of integral equations,” Proceedings of the Royal Society of London. Series A, vol. 83, pp.
    69–70, Nov. 1909.
    [69] T. Bayes, “An essay toward solving a problem in the doctrine of chances,” Philosophical
    Transactions of the Royal Society of London, vol. 53, pp. 370–418, Dec. 1763.
    [70] K. F. Gauss, Theoria Combinationis Observationum Erroribus Minimis Obnoxia. Gottingen,
    Germany: Dieterich, 1823.
    [71] R. A. Fisher, “On the mathematical foundations of theoretical statistics,” Philosophical
    Transactions of the Royal Society of London, vol. A 222, pp. 309–368, Nov. 1922.
    [72] J. Neyman and E. Pearson, “On the problem of the most efficient tests of statistical
    hypotheses,” Philosophical Transactions of the Royal Society of London, vol. A 231, pp.
    289–337, Aug. 1933.
    [73] T. Kailath and H. V. Poor, “Detection of stochastic processes,” IEEE Trans. Inf. Theory,
    vol. 44, no. 6, pp. 2230–2259, Nov. 1998.
    [74] R. Price and N. Abramson, “Detection theory,” IEEE Trans. Inf. Theory, vol. 7, pp.
    135–139, Jul. 1961.
    [75] R. D. Hippenstiel, Detection Theory. Boca Raton,Florida: CRC Press, 2002.
    [76] D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications. London,
    U.K.: Cambridge University Press, 1993.
    [77] W. Zhang and K. B. Letaief, “Cooperative communications for cognitive radio networks,”
    Proc. IEEE, vol. 97, pp. 878–893, May 2009.
    [78] D. M. Gruenbacher and D. R. Hummels, “A simple algorithm for generating discrete
    prolate spheroidalsequences,” IEEE Trans. Signal Process., vol. 42, no. 11, pp. 3276–
    3278, Nov. 1994.
    [79] G. H. Golub and C. F. VanLoan, Matrix Comoutations. Baltimore,MD: Johns Hopkins
    Univ. Press, 1989, 2nd ed.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE