簡易檢索 / 詳目顯示

研究生: 周宗佑
Chou, Tsung-Yu
論文名稱: 應用熱壓製程及表面改質方法改善奈米碳材/碳纖維/共聚物高分子複合材料積層板之分散性補強機械性質及扭轉疲勞壽命之研究
Investigation of the Hot-press Process and Surface Modification Method to Reinforce Mechanical Strength and Torsional Fatigue Life of Nanocomposite Laminates Through Improving the Dispersibility of Nanofiller
指導教授: 蔡宏營
Tsai, Hung-Yin
口試委員: 葉維磬
Yeh, Wei-Ching
葉孟考
YEH, MENG-KAO
葉銘泉
YEH, MING-CHUAN
蔡佳霖
Tsai, Jia-Lin
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 178
中文關鍵詞: 氧代氮代苯并環己烷奈米石墨烯片多壁奈米碳管積層板表面改質扭轉疲勞壽命共聚物高分子
外文關鍵詞: Polybenzoxazine, Graphene nanosheets, Multi-wall Carbon nanotubes, Laminates, Surface Modification, Torsional Fatigue Life, co-polymer
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以奈米碳管(Multi-wall Carbon nanotubes, CNTs)、奈米石墨烯片(Graphene nanosheets, GNS)、環氧樹脂(Epoxy, EPO)交聯聚氧代氮代苯并環己烷(polybenzoxazine, PBZ)及碳纖維積層板為研究主體,旨在探討奈米高分子複合材料的化學性質、物理性質及機械性質相輔相成的重要性,且藉由材料疊層結構、製程設計及化學改質/ 合成的方法來滿足某些物理性質的需求、並以物理性質研究來延續複合材料的應用性與實用性。研究內容將分為四個主題:
    I. 奈米補強填充材的製備方法與鑑定:
    在以往的文獻中指出,因應終端應用進而改變奈米碳材的表面特性,並導入高分子複合材料中,材料各項性質也將隨之改變,本研究製備二種不同維度的奈米碳材,分別為奈米碳管及石墨烯,並將其進行表面改質;藉由X-ray diffraction analysis, XRD、X-ray photoelectron spectra ,XPS、Raman spectroscopy…等的量測結果,均顯示成功製備奈米石墨烯片及奈米銀線,並成功將二種不同維度之奈米碳材接枝上MDI的官能基,以利後續奈米複合材料分散性的研究。
    II. 應用奈米複合材料製程設計改善奈米填充材分散性之研究:
    應用製程工序的改善,以提升奈米碳材對於高分子基材的分散性,並提出一種高性能熱固性高分子複合材料的製程設計方法,結果顯示,應用縮短基材固化時間而提升高黏度時間的特性,抵抗奈米碳材因凡得瓦力互相吸引堆疊,提高奈米複合材料整體的分散性及均質性,並同時添加化學改質後的奈米碳材,有效提升各項綜合機械性能。
    III. 奈米複合材料之分散性對於薄膜各項性質之影響:
    藉由製程工法定讞最佳的製備程序,成功製備出無缺陷之高分子奈米複合材料之薄膜試片,由於薄膜的高縱橫比及透光的特性,能清楚的在巨觀的狀態下,觀察奈米碳材在高分子基材中整體分散性的優劣,並以應力指標及誤差範圍佐以證明分散性對機械強度及實驗再現性的影響。
    IV. 應用不同維度之協同效應改善奈米複合材料之機械性質研究:
    實驗結果指出,改質後的奈米碳管及石墨烯混和摻入纖維積層板中,存在著協同效應,相較於添加單一奈米碳材,更能有效補強積層板的性能,在拉伸、彎曲、層間剪切及扭轉疲勞各項性質均有顯著的補強效果,奈米碳材能提升纖維和基材之間的黏著力,致使減少或延緩脫鍵及脫層的情形,讓負載能夠順利傳遞至纖維,使強度及壽命提升。


    Herein, the significance of chemical, physical, and mechanical synergies in a variety of nano-polymer composites were investigated. The composites included multi-wall carbon nanotubes (CNTs), graphene nanosheets (GNS), epoxy (EPO) resin cross-linked polybenzoxazine (PBZ), and carbon fiber laminates. In these nano-polymer composites, physical requirements were achieved using laminated structures, process design, and chemical modification/synthesis. The physical properties of the prepared materials were subsequently examined in further detail to extend the applicability and usability of the composite materials. The contents of this study can be divided into four major themes:
    I. Preparation and characterization of reinforcing nano-fillers
    Previously, it has been demonstrated that changes in the surface characteristics of a nanocarbon material incorporated into a polymer composite for a particular end-use application often alters other composite properties. Herein, we prepared two nanocarbon materials with different dimensionalities (carbon nanotubes and graphene), and subsequently modified their surfaces. The X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and Raman spectroscopic analyses indicated that nanographene sheets and silver nanowires were successfully prepared. These nano-carbon materials were successfully grafted onto the functional groups of MDI, which facilitated the subsequent study of nanocomposite dispersion.
    II. Improving nanocarbon materials dispersibility by optimizing nanocomposite process design
    The dispersibility of nano-carbon materials in polymer substrates was enhanced by optimizing the related synthetic processes. Furthermore, a process for producing high-performance thermosetting polymer composites was proposed. Application of the proposed method shortened the substrate curing time, improved the characteristics of the high-viscosity period, prevented nanocarbon stacking due to Van der Waals forces, and enhanced the overall dispersibility and homogeneity of the resulting nanocomposite material. Moreover, addition of the chemically modified nanocarbon materials effectively improved all mechanical properties of the nanocomposite.
    III. The effect of nanocomposite dispersibility on film properties
    A defect-free nanocomposite polymer film was successfully produced using the optimized preparation procedure obtained via process engineering. Because of the high aspect ratio and transmissivity of the film, the nanocarbon dispersibility in the polymer substrate was clearly observed under macroscopic conditions. The dispersibility effects on the mechanical strength and experimental reproducibility of the composite were subsequently examined via stress index and margin of error analyses.
    IV. Enhancing the mechanical properties of the nanocomposites by exploiting synergies between nanocarbon materials with different dimensionalities
    The experimental results suggested a synergistic effect between the modified carbon nanotubes and graphene after mixing into the fiber laminate. Compared to the addition of a single nanocarbon material, the addition of both nanocarbon materials more effectively improved the performance of the laminate. Significant improvements were obtained in terms of tensile strength, flexural strength, interlaminar shear strength, and torsional fatigue. The addition of nanocarbon materials also improved the adhesion between the fiber and substrate, thereby reducing or delaying debonding and delamination of the material. This allowed loads to be smoothly transferred to the fibers, greatly increasing the strength and endurance of the composite material.

    目錄 第一章 緒論 1 1-1 因能源及環保需求而發展的複合材料 1 1-1-1 全球風力機發展背景 1 1-1-2 高環境親和性之高分子複合材料 4 1-2 高分子複合材料 5 1-2-1 複合材料簡介 5 1-2-2 高分子基材簡介 7 1-3 研究動機及方法 8 第二章 文獻回顧 15 2-1 環氧樹脂 15 2-1-1 環氧樹脂的性質與應用 16 2-1-2 環氧樹脂的硬化機制 16 2-2 奈米填充材料 18 2-3 奈米碳管 20 2-4 石墨烯 22 2-5 碳纖維補強複合材料 22 2-6 奈米碳材於複合材料之機械與疲勞性質 23 2-6-1 奈米碳材於高分子基材中之分散性 23 2-6-2 奈米碳材補強奈米複合材料之機械性質 24 2-6-3 奈米補強材於碳纖維積層板之機械性質探討 27 2-7 溫濕效應對複合材料之影響 28 2-8 複合材料疲勞性質 30 2-8-1 材料破壞模式 30 2-8-2 應變能量釋放率 31 2-8-3 複合材料之破壞機制 32 2-8-4 應力(S)與疲勞週次(Nf)曲線(S-N curve) 33 2-9 奈米銀線 34 2-9-1 奈米銀線的製備 34 2-9-2 奈米銀線於高分子複合材料之應用 36 第三章 實驗方法 37 3-1 實驗材料 37 3-1-1 高分子基材與溶劑 37 3-1-2 奈米填充材料及纖維布 38 3-1-3 實驗試劑 39 3-2 實驗設備與量測儀器 41 3-2-1 實驗設備 41 3-2-2 量測儀器 43 3-3 奈米材料製備流程 47 3-3-1 表面改質奈米碳管之製備 47 3-3-2 奈米石墨烯片之製備 48 3-3-3 表面改質石墨烯之製備 48 3-3-4 奈米銀線之合成 49 3-4 實驗量測方法 50 3-4-1 奈米銀線鑑定 50 3-4-2 石墨烯及奈米碳管鑑定 51 3-4-3 奈米複合材料薄膜電性質及熱性質量測 52 3-4-4 奈米複合材料之機械性質量測 52 3-4-5 碳纖維積層板複合材料機械性質 54 第四章 奈米碳材及奈米銀線鑑定 56 4-1 石墨烯鑑定 56 4-1-1 X射線繞射圖譜分析 56 4-1-2 X射線光電子能譜分析 57 4-1-3 拉曼光譜分析 58 4-1-4 穿透式電子顯微鏡分析 60 4-1-5 熱重損失分析 60 4-2 改質奈米碳管鑑定 61 4-2-1 拉曼光譜分析 61 4-2-2 霍式紅外線光譜分析 61 4-2-3 高解析電子能譜儀分析 62 4-2-4 熱重損失分析 63 4-3 奈米銀線鑑定 64 4-3-1 電子顯微鏡型態分析 64 4-3-2 紫外光/可見光譜儀(UV/Vis Spectroscopy)分析 65 4-3-3 X射線繞射結晶結構分析 65 第五章 奈米複合材料及碳纖維積層板製程 66 5-1 高分子奈米複合材料製程 66 5-1-1 Polybenzoxazine/ Epoxy共聚物複合材料製備 66 5-1-2 奈米碳材暨共聚物複合材料製備 67 5-2 碳纖維積層板複合材料製備 70 第六章 石墨烯/奈米碳管/奈米銀線 奈米複合材料之分散性對於薄膜各項性質之影響 73 6-1 機械性質 74 6-2 熱機械性質 75 6-3 電性質 77 第七章 石墨烯/奈米碳管/奈米銀線複合材料之各項性質 81 7-1 機械性質 81 7-1-1 拉伸性質 81 7-1-2 彎曲性質 83 7-2 熱動態機械性質 84 第八章 石墨烯/ 奈米碳管/ 碳纖維 積層板之機械性質 86 8-1 機械性質 86 8-1-1 拉伸性質 86 8-1-2 彎曲性質 87 8-1-3 衝擊性質 89 8-1-4 扭轉性質 89 8-1-5 層間剪應力量測 90 8-2 動態扭轉疲勞機械性質 91 第九章 結論與未來研究方向 94 9-1 結論 94 9-2 未來研究方向 96 參考文獻 98 附表 108 附圖 120

    [1] Global wind report annual market update 2014 GWEC, Oct., 2014.
    [2] Global wind report annual market update 2018 GWEC, Aug., 2018.
    [3] 賴文祥, ”複合材料葉片疲勞葉片分析,”國立交通大學機械工程系所,碩士論文,2013
    [4] 劉萬琨, 張志英, 李銀風, 越萍,馬振基, ”風能與風力發電技術,” 五南圖書出版股份有限公司, 2009
    [5] 馬振基, 關旭強, 張文吉 ” 國際環境材料-發展現況與趨勢,” 工業材料91期, 2000
    [6] 山本良一, 王天民, “環境材料,” 北京化學工業出版社,1997
    [7] Holly, F. W. , Cope, A. C.,"Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine," Journal of the American Chemical Society, vol.66, pp. 1875-1879, 1944,.
    [8] A. Alhwaige, T. Agag, H. Ishida, S. Qutubuddin, “Biobased Chitosan/Polybenzoxazine Cross-Linked Films: Preparation in Aqueous Media and Synergistic Improvements in Thermal and Mechanical Properties,” Journal of Biomacromolecules, vol.14, pp. 1806-1815, 2013
    [9] Y. Xia & P. Yang & R. Zhu & C.L. Zhang, Y. Gu, “Blends of 4,4′-diaminodiphenyl methane-based benzoxazine and polysulfone: morphologies and properties,” J Polym Res, vol.21, pp. 1-8, 2014
    [10] “Henkel Benozxazine 99110”, http://www.henkelepsilonresin.com/
    [11] 徐國財, 張立德, “納米複合材料,” 化學工業出版社, 2002
    [12] 許明發, 郭文雄, “複合材料,” 高立圖書有限公司, 2000
    [13] 沈銘原, ”不同維度奈米碳材之協同效應對環氧樹脂/碳纖維複合材料補強行為之研究,” 國立清華大學動力/機械工程系所, 博士論文, 2014
    [14] 李育誠, ”石墨烯/氧代氮代苯并環己烷/環氧樹脂/碳纖維積層板複合材料機械性質與疲勞特性之研究,” 國立清華大學/動力機械工程系所, 碩士論文, 2014
    [15] 蕭世明, “含磷/氮難燃高分子之製備與熱穩定性質,” 國立中興大學/化學工程學系,碩士論文,2001。
    [16] 陳平,王德中, “環氧樹脂及其應用,” 化學工業出版社, 北京, 2004。
    [17] Ning, X. , Ishida H., "Phenolic materials via ring-opening polymerization: Synthesis and characterization of bisphenol-A based benzoxazines and their polymers," J. Polym. Sci. Pol. Chem., vol. 32, pp. 1121-1129, 1994.
    [18] H. Ishida, Y. Rodriguez, "Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry," Polymer, vol.36, pp. 3151-3158, 1995.
    [19] H. Ishida, H. Y. Low, “Synthesis of benzoxazine functional silane and adhesion properties of glass-fiber-reinforced polybenzoxazine composites,” J. Appl. Polym. Sci., Vol.69, pp. 2559-2567, 1998
    [20] A. Hirsch , O. Vostrowsky, “Functionalization of carbon nanotubes,” Top Curr. Chem., vol. 245, pp.193-237, 2005.
    [21] 鄧至均, “奈米碳材/環氧樹脂複合材料之製備與導熱性質研究,”國立清華大學/化學工程系,碩士論文, 2010。
    [22] V. Georgakilas, M. Otyepka, A. B. Bourlinos, V. Chandra, N. Kim, K. C. Kem, P. Hobz, R. Zbori, K. S. Kim, “Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications,” Chem. Rev., Vol.112, pp. 6156−6214,2012
    [23] 蕭閔謙,” 質子交換膜燃料電池用奈米碳材強化複合材料雙極板之製備與性質研究,” 國立清華大學/化學工程學系, 博士論文, 2012
    [24] C.A. May, Epoxy Resins, Chemistry and Technology, second ed., Marcel Dekker,New York, Basel, 1988.
    [25] S.J. Park, F.L. Jin, L. Nicolais, in: L. Nicolais, A. Borzacchiello (Eds.), Wiley Encyclopedia of Composites, John Wiley & Sons, 2011.
    [26] 馬振基, 趙珏, ”高分子複合材料,” 華香園出版社, 2005
    [27] Fan-Long Jin, Xiang Li, Soo-Jin Park,” Synthesis and application of epoxy resins: A review,” J. Ind. Eng. Chem., vol.29, pp.1-11,2015.
    [28] 陳帄, 王德中,”環氧樹脂及其應用,” 化學工業出版社, 2004
    [29] C. C. Riccardi, , R. J. J. Williams, “A kinetic scheme for an amine‐epoxy reaction with simultaneous etherification ,” J. Appl. Polym. Sci.,vol.32, pp.3445-3456, 1986.
    [30] 馬振基,”奈米材料科技原理與應用,”全華科技圖書股份有限公司, 2003
    [31] W. H. QI, M. P. Wang, Q. H. Liu, “Shape factor of nonspherical nanoparticles,” J. Mater. Sci., vol.40, pp. 2737-2739, 2005.
    [32] H. W. Kroto, J.R. Heath, S. C. O’Brien, R.F. Curl, R.E. Smalley., “C60:Buckminsterfullerene,” Nature; vol.318, pp.162-163, 1985.
    [33] S Iijima. ,”Helical microtubes of graphitic carbon,” Nature, vol.354, pp.56-58, 1991.
    [34] T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐ “Structure and electronicproperties of carbon nanotubes,” J. Phys. Chem. B; vol.104, pp2794-2801, 2000.
    [35] S. Amelinckx, A. Lucas, P. Lambin, “Ele ctron diffraction and microscopy of nanotubes,” Prog. Phys., vol.62, pp.1471-1524, 1988.
    [36] P. Ramirez, “Carbon Nanotubes for Science and Technology,” Bell Labs Tech. J., vol.10, pp.171-185, 2005.
    [37] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus,,”Electronic- Structure of Chiral Graphene Tubules,” Appl. Phys. Lett., vol.60, pp.2204-2216, 1992.
    [38] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, ”The Route Toward Applications,” Science, vol.297, pp.787–792, 2002.
    [39] K. I. Tserpes, P. Papanikos, “Finite Element modeling of single-walled carbon nanotubes,” Compos. Pt. B-Eng., vol.36, pp.468-477, 2005.
    [40] A. L. Kalamkarov, A. V..Georgiades, S. K. Rokkam, V. P. Veedu, M.N. GhasemiNejhad, “Analytical and numerical techniques to predict carbon nanotubes properties,” Int. J. Solids Struct., vol.43, pp.6832-6854, 2006.
    [41] J. N. Coleman, U. Khan , Y. K. Gun'ko, “Mechanical reinforcement of polymers using carbon nanotubes,” Advanced Materials, vol. 18, pp. 689-706, 2006.
    [42] C. Lee, X, Wei, J. W. Kysar, J. Hone, “Measurement of the elastic properities and instrinsic strength of monolayer grapheme,” Science. 321, 385-388, 2008.
    [43] K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666-669, 2004.
    [44] X. Lu, M. Yu, H. Huang, R. S. Ruoff, “Tailoring graohene with the goal of achieving single sheets,” Nat. Nanotechnol., vol.10, pp.269-272, 1999.
    [45] X. Li, “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nat. Nanotechnol, vol.3, pp.538-551, 2008.
    [46] P. Naghipour, S. M. Arnold, E. J. Pineda, “Multiscale Static Analysis of Notched and Unnotched Laminates Using the Generalized Method of Cells,” J. Compos. Mat., vol.43, pp.1437-1449, 2016.
    [47] J.F. Paiva, S. Mayer, M.C. Rezende, “Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field,” Mater. Res. Bull., Vol.8, pp.191-197, 2005.
    [48] A. Hirsch, O. Vostrowsky, “Functionalization of carbon nanotubes,” Top Curr Chem; vol.245, pp.193–237, 2005.
    [49] M. Alvaro, “Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube,” J. Phys. Chem. B, vol.108, pp.12691-12699, 2004.
    [50] S. G. Prolongo, M. R. Gude, A. Urena, “Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment,” Compos. Sci. Technol., vol.71, pp 765–771, 2011.
    [51] D. Cai, M. Song, “Recent advance in functionalized graphene/polymer nanocomposites,” J. Mater. Chem., vol.20, pp.7906-7915, 2010.
    [52] L. J. Cote, J. Kim, V. C. Tung, J. Luo, F. Kim, J. Huang, “Graphene oxide as surfactant sheets,” Pure Appl. Chem., vol. 83, pp. 95-106, 2011.
    [53] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnsond, J. E. Fischer, “Carbon nanotubes composites for thermal management,” Appl. Phys. Lett., vol.80, pp.2767-2770, 2002.
    [54] M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Z. Yu and N. Koratkar, “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS Nano, vol. 3, pp. 3884-3890, 2009.
    [55] M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu, N. Koratkar, “Fracture and fatigue in graphene nanocomposites,” Small, vol.6, pp.179-183, 2010.
    [56] J. H. Lee, K. Y. Rhee, S. J. Park, “Silane Modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites,” Compos. Pt. A-Appl. Sci. Manuf., pp.478–483, 2011.
    [57] I. Zaman, T. T. Phan, H. C. Kuan, Q. Meng, L. T. Bao La, L. Luong, O. Youssf, J. Ma, “Epoxy/graphene platelets nanocomposites with two levels of interface strength,” Polymer, vol.52, pp.1603-1611, 2011.
    [58] J. Qiu, S. Wang, “Enhancing polymer performance through graphene sheets,” J. Appl. Polym. Sci., vol.119, pp.3670-3674, 2011.
    [59] D. R. Bortz, E. G. Heras, I. Martin-Gullon, “Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites,” Macromolecules, vol.45, pp.238-245, 2012.
    [60] S. Y. Yang, W. N. Lin, Y. L. Huang, H. W. Tien, J. Y. Wang, C. C. Ma, S. M. Li, Y. S. Wang, “Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites,” Carbon, vol.49, pp. 793–803, 2011.
    [61] L. C. Tang, Y. J. Wan, D. Yan, Y. B. Pei, L. Zhao, Y. B. Li, L. B. Wu, J. X. Jiang, G. Q. Lai, “The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites,” Carbon, Vol. 60, pp 16–27, 2013.
    [62] 王國書, “奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學, 動力機械工程學系, 碩士論文, 2007
    [63] F. Yavari, M. Rafiee, J. Rafiee, Z. Z. Yu, N. Koratkar, “Dramatic increase in fatigue life in hierarchical graphene composites,” ACS Appl. Mater. Interfaces, vol.10, pp.2738-2743, 2010.
    [64] D. R. Bortz, C. Merino, I. Martin-Gullon, “Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates,” Compos. Pt. A-Appl. Sci. Manuf., vol.42, pp.1584-1591, 2011.
    [65] M.T. Kim, K.Y. Rhee, J.H. Lee, D. Hui, K.T. Lau, “Property enhancement of a carbon fiber/epoxy composite by using carbon Nanotubes,” Compos. Pt. B-Eng., vol.42, pp.1257–1261, 2011.
    [66] D. C. Davis, J. W. Wikerson, J. Zhu, V. G. Hadjiev, “A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes,” Compos Sci Technol, 71, pp 1089–1097, 2011.
    [67] 楊又璇, “多壁奈米碳管對纖維補強高分子預浸材積層板複合材料機械性質與扭轉疲勞特性之研究,” 國立清華大學,動力機械工程學系, 碩士論文, 2011
    [68] N. T. Phonga, M. H. Gabra, K. Okuboa, B. Chuongb, T. Fujiia, “Improvement in the mechanical performances of carbon fiber/epoxy composite with addition of nano-(Polyvinyl alcohol) fibers,” Composite Structures, vol.99, pp.380–387,2013.
    [69] J. Morton, S. Kellas, S. Bishop, “Damage characteristics in notched carbon fiber composites subjected to fatigue loading-environmental effects,” J. Compos. Mater., vol.22, pp.657-673, 1988.
    [70] S. Kellas, J. Morton, P. Curtis, “The effect of hygrothermal environments upon the tensile and compressive strengths of notched CFRP laminates. Part 1: Static loading,” Composites, vol.21, pp. 41-51, 1990.
    [71] R. Selzer, K. Friendrich, “Mechanical Properties and Failure Behavior of Carbon Fiber Reinforced Polymer Composites under the Influence of Moisture,” Composite, Vol. 28, pp.594-604, 1997.
    [72] T. A. Collings, D. L. Mead, D. E. W. Stone,“ The Effects of High Temperature Excursions on Environmentally Exposed CFC,” RAE Technical Report, TR 85074 (Royal Aircraft Establishment, Farnborough, UK), 1985.
    [73] Yu. I. Dimitrienko, “Thermomechanical Behavior of Composite Materials and Structures under High Temperature: 1. Material,” Composite, Vol. 28, pp.463- 471, 1997.
    [74] Yu. I. Dimitrienko, “Thermomechanical Behavior of Composite Materials and Structures under High Temperature: 2. Structure,” Composite, Vol. 28, pp.463- 471, 1997.
    [75] 李宗勳, “預紐、溫度效應及熱壓修補對擬均向性Gr/PEEK 複合材料疲勞行 為之影響,” 國立清華大學,動力機械工程學系,碩士論文, 1999。
    [76] A. Wöhler, “Wohler’s experiments on the strength of metals,” Engineering,New, vol.4, pp.160-161,1867.
    [77] D. F. Devitt, R. A. Schapery, W. L. Bradley, “A Method for Determining the Mode I Delamination Fracture Toughness of Elastic and Viscoelastic Composite Materials,” J. Compos. Mater., vol.14, pp.270-270,1980.
    [78] A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. Roy. Soc. of London, A221, pp.163–197,1921.
    [79] G. R. Irwin, “Fracture dynamics,” Fracturing of Metals, ASM publ., pp. 147– 166, 1948.
    [80] G. R. Irwin, Handbuch der Physik VI, Flüge Ed., Springer, pp. 551–590. 1958.
    [81] J. R. Rice, “A path independent integral and the approximate analysis of strain concentrations by notachs and cracks,” J. Appl. Mech., pp. 379–386, 1968.
    [82] K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb, J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin, C. T. Herakovich, eds., Pergamon Press, New York, pp.399-420, 1983.
    [83] P. Paris ,F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol.85, pp. 528-531, 1963.
    [84] B. Harris, H. Reiter, T. Adam, R. F. Dickson, G. Fernando, “Fatigue behavior of carbon fibre reinforced plastics,” composites., vol.21, 0010-4361/90/050232-11, 1990.
    [85] H. T. Hahn, R.Y. Kim, “Fatigue Behavior of Composite Laminate,” J. Compos Mater., Vol. 10, pp.156-180, 1976.
    [86] J. M. Whitney, “Fatigue Characterization of Composite Materials,” Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, pp.133-151, 1981.
    [87] Y. Sun, Y. Yin, B .T. Mayers, T. Herricks, Y. Xia, “Uniform Silver Nanowires Synthesis by Reducing AgNO3with Ethylene Glycol in the Presence of Seeds and Vinyl Pyrrolidone,” Chem. Mater., vol.14, 4736-4745, 2002.
    [88] B. Wiley, Y. Sun, Y. Xia, “Synthesis of Silver Nanostructures with Controlled Shape and Properties,” Accounts Chem. Res., vol.40, pp.1067–1076, 2007.
    [89] S. E. Skrabalak, B. J. Wiley, M. Kim,E. V. Formo, Y. Xia,| “On the Polyol Synthesis of Silver Nanostructures: Glycolaldehyde as a Reducing Agent,” Nano Letters, vol.8, pp.2077-2081, 2008.
    [90] P. Jiang, S. Y. Li, S. S. Xie, Yan Gao, L. Song, “Machinable Long PVP-Stabilized Silver Nanowires,” Chem.-Eur. J., vol.10, pp.4817– 4821, 2004.
    [91] Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B. J. Wiley, Z. L. Wang, “Size effects on elasticity, yielding, and fracture of silver nanowires: In situ experiments,” Phys. Rev. B, vol.85, pp.454-463, 2012.
    [92] C. Liu, X. Yu, “Silver nanowire-based transparent, flexible, and conductive thin film,” Nanoscale Res. Lett., vol.6, pp.75-86,2011.
    [93] J. Jiu, M. Nogi, T. Sugahara, T. Tokuno, T. Araki, N. Komoda, K. Suganuma, H, Uchidab, K. Shinozakib, “Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique,” J. Mater. Chem., vol.22, pp.23561-23567, 2012.
    [94] R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. Bing Zheng, H. Zhou, T. B. Song, C. C. Chen, P. S. Weiss, G, Li, Y. Yang, “Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors,” ACS Nano, vol.5, pp.9877–9882, 2011.
    [95] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, Y. Cui, “Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes,” ACS Nano, vol.4, pp.2955–2963, 2010.
    [96] C. Chen , Y. Tang, Y. S. Ye, Z. Xue, Y. Xue , X. Xie, Y.W. Mai, “High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging,” Compos. Sci. Technol., vol.105, pp.80-85, 2014.
    [97] Y. Hsiuan, C. C. M. Ma, C. C. Teng, Y. L. Huang, H. W. Tien, “Enhanced thermal and mechanical properties of epoxy composites filled with silver nanowires and nanoparticles,” J. Taiwan Inst. Chem. Eng., vol.44, pp.654-659, 2013.
    [98] M. Guo, X. Yi, G. Liu, L. Liu “Simultaneously increasing the electrical conductivity and fracture toughness of carbon–fiber composites by using silver nanowires-loaded interleaves,” Compo. Sci. Technol., vol.97, pp.27-33, 2014.
    [99] R. S. Chao, R. K. Khanna, E.R. Lippincott, “Theoretical and experimental resonance Raman intensities for the manganate ion,” J. Raman Spectrosc., vol.3, pp.121-131,1975.
    [100] J. Chiguma, E. Johnson, P. Shah, N. Gornopolskaya, W. E. Jones Jr, “Thermal Diffusivity and Thermal Conductivity of Epoxy-Based Nanocomposites by the Laser Flash and Differential Scanning Calorimetry Techniques,” Open J. Compos. Mater., vol.3, pp.51-62, 2013.
    [101] ASTM D638-10, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, 2010.
    [102] ASTM D790-10, “Flexural Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” Annual Book of ASTM Standards, 2010.
    [103] ASTM D256-10, “Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics,” Annual Book of ASTM Standards, 2010.
    [104] ASTM D3479/D3479M-06, “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials,” 2007.
    [105] ASTM E739-91, “Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data,” 2004.
    [106] C.F. Andrea, “Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects,” Solid State Commun. vol.143, pp.47-57, 2007.
    [107] Luis C.O. Silva, Glaura G. Silva, Pulickel M. Ajayan, Bluma G. Soares, “Long-term behavior of epoxy/graphene-based composites determined by dynamic mechanical analysis,” J. mater. Sci., vol.50, pp.6407-6419,2015.
    [108] I. Zaman, T.T. Phan, “Epoxy/graphene platelets nanocomposites with two levels of interface strength,” Polymer, vol.52, pp.1603-1611, 2011.
    [109] G. Beamson, D. Briggs, “High Resolution XPS of Organic Polymer: The Scienta ESCA300 Database,” J. Chem. Educ., vol.70, pp.A25, 1993.
    [110] C. T. Lo, K. H. Tsui, “The dispersion of magnetic nanorods in poly(2-vinylpyridine),” Polymer International, 62, 1652-1658, 2013.
    [111] W. Zhang, Y. Liu, R. Cao, Z. Li, Y. Zhang, Y. Tang, K. Fan, “Synergy between Crystal Strain and Surface Energy in Morphological Evolution of Five-Fold-Twinned Silver Crystals,” J. Am. Chem. Soc., vol.130, pp.15581–15588, 2008.
    [112] J. Li, Y. Tong, L. Guan, S.f. Wu, D. Li, “Optimization of COD determination by UV–vis spectroscopy using PLS chemometrics algorithms,” Optik, vol.174, pp.591-599, 2018.
    [113] V. H. Luan, H. N. Tien, T. V. Cuong, B. S. Kong, J. S. Chung, E. J. Kima, S. H. Hur, “Novel conductive epoxy composites composed of 2-D chemically reduced grapheme and 1-D silver nanowire hybrid fillers,” J. Mater. Chem., vol.22, pp.8649-8653, 2012.
    [114] W. Xu, Q. Xu, Q. Huang, R. Tan, W. Shen, W. Song, “Electrically conductive silver nanowires-filled methylcellulose composite transparent films with high mechanical properties,” Mater. Lett. Vol.152, pp.173-176, 2015.
    [115] 林彥銘, “改質石墨稀微片/多壁奈米碳管/纖維積層板複合材料機械性質暨扭轉疲勞之研究,” 國立清華大學動力機械工程學系碩士論文,2013

    QR CODE