簡易檢索 / 詳目顯示

研究生: 顏惠璇
yan, Huei-Syuan
論文名稱: SUMO-3鍵結對金屬感應轉錄因子蛋白質特性之影響
The effect of SUMO-3 conjugation on MTF-1 protein characteristics
指導教授: 林立元
Lin, Lih-Yuan
口試委員: 高茂傑
李易展
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 54
中文關鍵詞: 金屬感應轉錄因子'SUMO-3
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在細胞中金屬感應轉錄因子(MTF-1)平常大多位於細胞質,當其受到活化會進入細胞核內,與啟動子上的金屬感應序列結合,活化下游基因表現,藉以調節細胞中鋅離子濃度恆定、或對抗重金屬毒性以及氧化、缺氧逆境。轉譯後修飾作用可能會影響並改變蛋白質的特性,但目前對於MTF-1蛋白質後修飾作用的研究尚不充足完善,然而透過我們先前的研究已得知小鼠MTF-1在lysine 627位置會被SUMO-1這後修飾蛋白進行修飾,並且以鋅離子刺激時被修飾的程度會明顯下降;而在本篇研究我們主要想探討MTF-1是否也會被另一SUMO成員SUMO-3進行修飾,並探討其蛋白質特性是否受到影響。經由我們的實驗結果證實MTF-1會被SUMO-3進行修飾且主要位置也在lysine 627;而當細胞以鋅離子的刺激時,與SUMO-1的修飾不同,MTF-1被SUMO-3修飾的程度略有上升,但不隨濃度增加而增加。透過即時定量PCR及報導基因檢測發現,SUMO-3的大量表現或修飾會抑制MTF-1的轉錄活性,但MTF-1在細胞中分布情形以及與DNA的結合能力卻不會受到SUMO-3影響;而我們也證明SUMO-3的大量表現或修飾會增加MTF-1蛋白質的穩定性,且比較被SUMO-3或SUMO-1修飾的MTF-1,發現被SUMO-3修飾的MTF-1有較高的蛋白質穩定性。


    中文摘要.................................................1 英文摘要.................................................2 前言.....................................................3 材料與方法..............................................11 結果....................................................19 討論....................................................26 參考文獻................................................31 附圖....................................................43

    1. Hamdi SA, Nassif OI, Ardawi MS (1997) Effect of marginal or severe dietary zinc deficiency on testicular development and functions of the rat. Arch Androl 38: 243-253.
    2. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130: 1500S-1508S.
    3. Prasad AS (1998) Zinc and immunity. Mol Cell Biochem 188: 63-69.
    4. Nordberg M, Nordberg GF (1987) On the role of metallothionein in cadmium induced renal toxicity. Experientia Suppl 52: 669-675.
    5. Kagi JH, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27: 8509-8515.
    6. Stuart GW, Searle PF, Palmiter RD (1985) Identification of multiple metal regulatory elements in mouse metallothionein-I promoter by assaying synthetic sequences. Nature 317: 828-831.
    7. Westin G, Schaffner W (1988) A zinc-responsive factor interacts with a metal-regulated enhancer element (MRE) of the mouse metallothionein-I gene. EMBO J 7: 3763-3770.
    8. Durnam DM, Palmiter RD (1981) Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem 256: 5712-5716.
    9. Otsuka F, Okugaito I, Ohsawa M, Iwamatsu A, Suzuki K, et al. (2000) Novel responses of ZRF, a variant of human MTF-1, to in vivo treatment with heavy metals. Biochim Biophys Acta 1492: 330-340.
    10. Smirnova IV, Bittel DC, Ravindra R, Jiang H, Andrews GK (2000) Zinc and cadmium can promote rapid nuclear translocation of metal response element-binding transcription factor-1. J Biol Chem 275: 9377-9384.
    11. Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, et al. (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 12: 1355-1362.
    12. Brugnera E, Georgiev O, Radtke F, Heuchel R, Baker E, et al. (1994) Cloning, chromosomal mapping and characterization of the human metal-regulatory transcription factor MTF-1. Nucleic Acids Res 22: 3167-3173.
    13. Auf der Maur A, Belser T, Elgar G, Georgiev O, Schaffner W (1999) Characterization of the transcription factor MTF-1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response. Biol Chem 380: 175-185.
    14. Dalton TP, Solis WA, Nebert DW, Carvan MJ, 3rd (2000) Characterization of the MTF-1 transcription factor from zebrafish and trout cells. Comp Biochem Physiol B Biochem Mol Biol 126: 325-335.
    15. Zhang B, Egli D, Georgiev O, Schaffner W (2001) The Drosophila homolog of mammalian zinc finger factor MTF-1 activates transcription in response to heavy metals. Mol Cell Biol 21: 4505-4514.
    16. Chen WY, John JA, Lin CH, Chang CY (2002) Molecular cloning and developmental expression of zinc finger transcription factor MTF-1 gene in zebrafish, Danio rerio. Biochem Biophys Res Commun 291: 798-805.
    17. Cheung AP, Au CY, Chan WW, Chan KM Characterization and localization of metal-responsive-element-binding transcription factors from tilapia. Aquat Toxicol 99: 42-55.
    18. Lindert U, Leuzinger L, Steiner K, Georgiev O, Schaffner W (2008) Characterization of metal-responsive transcription factor (MTF-1) from the giant rodent capybara reveals features in common with human as well as with small rodents (mouse, rat). Short communication. Chem Biodivers 5: 1485-1494.
    19. Rutherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3: 1-13.
    20. Moilanen LH, Fukushige T, Freedman JH (1999) Regulation of metallothionein gene transcription. Identification of upstream regulatory elements and transcription factors responsible for cell-specific expression of the metallothionein genes from Caenorhabditis elegans. J Biol Chem 274: 29655-29665.
    21. Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, et al. (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13: 2870-2875.
    22. Saydam N, Georgiev O, Nakano MY, Greber UF, Schaffner W (2001) Nucleo-cytoplasmic trafficking of metal-regulatory transcription factor 1 is regulated by diverse stress signals. J Biol Chem 276: 25487-25495.
    23. Lindert U, Cramer M, Meuli M, Georgiev O, Schaffner W (2009) Metal-responsive transcription factor 1 (MTF-1) activity is regulated by a nonconventional nuclear localization signal and a metal-responsive transactivation domain. Mol Cell Biol 29: 6283-6293.
    24. Radtke F, Georgiev O, Muller HP, Brugnera E, Schaffner W (1995) Functional domains of the heavy metal-responsive transcription regulator MTF-1. Nucleic Acids Res 23: 2277-2286.
    25. Li Y, Kimura T, Huyck RW, Laity JH, Andrews GK (2008) Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1. Mol Cell Biol 28: 4275-4284.
    26. Dalton TP, Li Q, Bittel D, Liang L, Andrews GK (1996) Oxidative stress activates metal-responsive transcription factor-1 binding activity. Occupancy in vivo of metal response elements in the metallothionein-I gene promoter. J Biol Chem 271: 26233-26241.
    27. Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59: 95-104.
    28. Murphy BJ, Kimura T, Sato BG, Shi Y, Andrews GK (2008) Metallothionein induction by hypoxia involves cooperative interactions between metal-responsive transcription factor-1 and hypoxia-inducible transcription factor-1alpha. Mol Cancer Res 6: 483-490.
    29. Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, Hayes JD, et al. (2008) Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J Biol Chem 283: 33554-33562.
    30. Saydam N, Steiner F, Georgiev O, Schaffner W (2003) Heat and heavy metal stress synergize to mediate transcriptional hyperactivation by metal-responsive transcription factor MTF-1. J Biol Chem 278: 31879-31883.
    31. Green CJ, Lichtlen P, Huynh NT, Yanovsky M, Laderoute KR, et al. (2001) Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res 61: 2696-2703.
    32. Murphy BJ, Andrews GK, Bittel D, Discher DJ, McCue J, et al. (1999) Activation of metallothionein gene expression by hypoxia involves metal response elements and metal transcription factor-1. Cancer Res 59: 1315-1322.
    33. Murphy BJ, Sato BG, Dalton TP, Laderoute KR (2005) The metal-responsive transcription factor-1 contributes to HIF-1 activation during hypoxic stress. Biochem Biophys Res Commun 337: 860-867.
    34. Wang Y, Wimmer U, Lichtlen P, Inderbitzin D, Stieger B, et al. (2004) Metal-responsive transcription factor-1 (MTF-1) is essential for embryonic liver development and heavy metal detoxification in the adult liver. FASEB J 18: 1071-1079.
    35. Gunes C, Heuchel R, Georgiev O, Muller KH, Lichtlen P, et al. (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17: 2846-2854.
    36. Guo L, Lichten LA, Ryu MS, Liuzzi JP, Wang F, et al. STAT5-glucocorticoid receptor interaction and MTF-1 regulate the expression of ZnT2 (Slc30a2) in pancreatic acinar cells. Proc Natl Acad Sci U S A 107: 2818-2823.
    37. Wimmer U, Wang Y, Georgiev O, Schaffner W (2005) Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Res 33: 5715-5727.
    38. Cramer M, Nagy I, Murphy BJ, Gassmann M, Hottiger MO, et al. (2005) NF-kappaB contributes to transcription of placenta growth factor and interacts with metal responsive transcription factor-1 in hypoxic human cells. Biol Chem 386: 865-872.
    39. Lichtlen P, Wang Y, Belser T, Georgiev O, Certa U, et al. (2001) Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res 29: 1514-1523.
    40. Auf der Maur A, Belser T, Wang Y, Gunes C, Lichtlen P, et al. (2000) Characterization of the mouse gene for the heavy metal-responsive transcription factor MTF-1. Cell Stress Chaperones 5: 196-206.
    41. Saydam N, Adams TK, Steiner F, Schaffner W, Freedman JH (2002) Regulation of metallothionein transcription by the metal-responsive transcription factor MTF-1: identification of signal transduction cascades that control metal-inducible transcription. J Biol Chem 277: 20438-20445.
    42. LaRochelle O, Gagne V, Charron J, Soh JW, Seguin C (2001) Phosphorylation is involved in the activation of metal-regulatory transcription factor 1 in response to metal ions. J Biol Chem 276: 41879-41888.
    43. Liu YC, Lin MC, Chen HC, Tam MF, Lin LY The role of small ubiquitin-like modifier-interacting motif in the assembly and regulation of metal-responsive transcription factor 1. J Biol Chem 286: 42818-42829.
    44. Meluh PB, Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell 6: 793-807.
    45. Chen A, Mannen H, Li SS (1998) Characterization of mouse ubiquitin-like SMT3A and SMT3B cDNAs and gene/pseudogenes. Biochem Mol Biol Int 46: 1161-1174.
    46. Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252-6258.
    47. Bohren KM, Nadkarni V, Song JH, Gabbay KH, Owerbach D (2004) A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J Biol Chem 279: 27233-27238.
    48. Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 337: 517-520.
    49. Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, et al. (2006) Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol Cell Proteomics 5: 2298-2310.
    50. Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, et al. (2009) System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2: ra24.
    51. Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135: 1457-1470.
    52. Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97-107.
    53. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, et al. (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280: 4102-4110.
    54. Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I (2006) Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem 281: 16117-16127.
    55. Kerscher O (2007) SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 8: 550-555.
    56. Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, et al. (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15: 3088-3103.
    57. Zhu S, Goeres J, Sixt KM, Bekes M, Zhang XD, et al. (2009) Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. Mol Cell 33: 570-580.
    58. Xu J, He Y, Qiang B, Yuan J, Peng X, et al. (2008) A novel method for high accuracy sumoylation site prediction from protein sequences. BMC Bioinformatics 9: 8.
    59. Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, et al. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem 276: 35368-35374.
    60. Bylebyl GR, Belichenko I, Johnson ES (2003) The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278: 44113-44120.
    61. Xu Z, Chan HY, Lam WL, Lam KH, Lam LS, et al. (2009) SUMO proteases: redox regulation and biological consequences. Antioxid Redox Signal 11: 1453-1484.
    62. Gong L, Li B, Millas S, Yeh ET (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 448: 185-189.
    63. Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272: 26799-26802.
    64. Gong L, Kamitani T, Fujise K, Caskey LS, Yeh ET (1997) Preferential interaction of sentrin with a ubiquitin-conjugating enzyme, Ubc9. J Biol Chem 272: 28198-28201.
    65. Desterro JM, Thomson J, Hay RT (1997) Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 417: 297-300.
    66. Schwarz SE, Matuschewski K, Liakopoulos D, Scheffner M, Jentsch S (1998) The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proc Natl Acad Sci U S A 95: 560-564.
    67. Saitoh H, Sparrow DB, Shiomi T, Pu RT, Nishimoto T, et al. (1998) Ubc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8: 121-124.
    68. Lee GW, Melchior F, Matunis MJ, Mahajan R, Tian Q, et al. (1998) Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2-type ubiquitin-conjugating enzyme homologue. J Biol Chem 273: 6503-6507.
    69. Kahyo T, Nishida T, Yasuda H (2001) Involvement of PIAS1 in the sumoylation of tumor suppressor p53. Mol Cell 8: 713-718.
    70. Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A 99: 2872-2877.
    71. Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22: 5222-5234.
    72. Nishida T, Yasuda H (2002) PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J Biol Chem 277: 41311-41317.
    73. Weger S, Hammer E, Heilbronn R (2005) Topors acts as a SUMO-1 E3 ligase for p53 in vitro and in vivo. FEBS Lett 579: 5007-5012.
    74. Braschi E, Zunino R, McBride HM (2009) MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission. EMBO Rep 10: 748-754.
    75. Zhao X, Blobel G (2005) A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc Natl Acad Sci U S A 102: 4777-4782.
    76. Potts PR, Yu H (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 25: 7021-7032.
    77. Gregoire S, Yang XJ (2005) Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors. Mol Cell Biol 25: 2273-2287.
    78. Gao C, Ho CC, Reineke E, Lam M, Cheng X, et al. (2008) Histone deacetylase 7 promotes PML sumoylation and is essential for PML nuclear body formation. Mol Cell Biol 28: 5658-5667.
    79. Subramaniam S, Sixt KM, Barrow R, Snyder SH (2009) Rhes, a striatal specific protein, mediates mutant-huntingtin cytotoxicity. Science 324: 1327-1330.
    80. Oh SM, Liu Z, Okada M, Jang SW, Liu X, et al. Ebp1 sumoylation, regulated by TLS/FUS E3 ligase, is required for its anti-proliferative activity. Oncogene 29: 1017-1030.
    81. Morita Y, Kanei-Ishii C, Nomura T, Ishii S (2005) TRAF7 sequesters c-Myb to the cytoplasm by stimulating its sumoylation. Mol Biol Cell 16: 5433-5444.
    82. Gong L, Millas S, Maul GG, Yeh ET (2000) Differential regulation of sentrinized proteins by a novel sentrin-specific protease. J Biol Chem 275: 3355-3359.
    83. Cheng J, Bawa T, Lee P, Gong L, Yeh ET (2006) Role of desumoylation in the development of prostate cancer. Neoplasia 8: 667-676.
    84. Hang J, Dasso M (2002) Association of the human SUMO-1 protease SENP2 with the nuclear pore. J Biol Chem 277: 19961-19966.
    85. Zhang H, Saitoh H, Matunis MJ (2002) Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol Cell Biol 22: 6498-6508.
    86. Di Bacco A, Ouyang J, Lee HY, Catic A, Ploegh H, et al. (2006) The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol 26: 4489-4498.
    87. Gong L, Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281: 15869-15877.
    88. Mukhopadhyay D, Ayaydin F, Kolli N, Tan SH, Anan T, et al. (2006) SUSP1 antagonizes formation of highly SUMO2/3-conjugated species. J Cell Biol 174: 939-949.
    89. Nishida T, Tanaka H, Yasuda H (2000) A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase. Eur J Biochem 267: 6423-6427.
    90. Nacerddine K, Lehembre F, Bhaumik M, Artus J, Cohen-Tannoudji M, et al. (2005) The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev Cell 9: 769-779.
    91. Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, et al. (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 276: 40263-40267.
    92. Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, et al. (2001) Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem 276: 18513-18518.
    93. Ross S, Best JL, Zon LI, Gill G (2002) SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 10: 831-842.
    94. Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2: 233-239.
    95. Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131: 584-595.
    96. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, et al. (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131: 309-323.
    97. Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, et al. (2004) Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 324: 394-400.
    98. Yang SH, Jaffray E, Hay RT, Sharrocks AD (2003) Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol Cell 12: 63-74.
    99. Kim J, Cantwell CA, Johnson PF, Pfarr CM, Williams SC (2002) Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J Biol Chem 277: 38037-38044.
    100. Dadke S, Cotteret S, Yip SC, Jaffer ZM, Haj F, et al. (2007) Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol 9: 80-85.
    101. Lin X, Sun B, Liang M, Liang YY, Gast A, et al. (2003) Opposed regulation of corepressor CtBP by SUMOylation and PDZ binding. Mol Cell 11: 1389-1396.
    102. Thakar K, Niedenthal R, Okaz E, Franken S, Jakobs A, et al. (2008) SUMOylation of the hepatoma-derived growth factor negatively influences its binding to chromatin. FEBS J 275: 1411-1426.
    103. Klenk C, Humrich J, Quitterer U, Lohse MJ (2006) SUMO-1 controls the protein stability and the biological function of phosducin. J Biol Chem 281: 8357-8364.
    104. Papouli E, Chen S, Davies AA, Huttner D, Krejci L, et al. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19: 123-133.
    105. Yu CW, Chen JH, Lin LY (1997) Metal-induced metallothionein gene expression can be inactivated by protein kinase C inhibitor. FEBS Lett 420: 69-73.
    106. Brunet Simioni M, De Thonel A, Hammann A, Joly AL, Bossis G, et al. (2009) Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene 28: 3332-3344.
    107. Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, et al. (2003) Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23: 2953-2968.
    108. Shalizi A, Bilimoria PM, Stegmuller J, Gaudilliere B, Yang Y, et al. (2007) PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J Neurosci 27: 10037-10046.
    109. Shalizi A, Gaudilliere B, Yuan Z, Stegmuller J, Shirogane T, et al. (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311: 1012-1017.
    110. Muller S, Matunis MJ, Dejean A (1998) Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus. EMBO J 17: 61-70.
    111. Gresko E, Ritterhoff S, Sevilla-Perez J, Roscic A, Frobius K, et al. (2009) PML tumor suppressor is regulated by HIPK2-mediated phosphorylation in response to DNA damage. Oncogene 28: 698-708.
    112. Hayakawa F, Privalsky ML (2004) Phosphorylation of PML by mitogen-activated protein kinases plays a key role in arsenic trioxide-mediated apoptosis. Cancer Cell 5: 389-401.
    113. Oshima M, Mimura J, Sekine H, Okawa H, Fujii-Kuriyama Y (2009) SUMO modification regulates the transcriptional repressor function of aryl hydrocarbon receptor repressor. J Biol Chem 284: 11017-11026.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE