研究生: |
張明中 Chang, Ming Chung |
---|---|
論文名稱: |
高斯隨機域模型下的效應混淆 Effect Aliasing in Gaussian Random Field Models |
指導教授: |
鄭少為
Cheng, Shao Wei |
口試委員: |
曾勝滄
洪志真 廖振鐸 陳瑞彬 蔡碧紋 潘建興 林共進 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 部分因子設計 、貝氏設計 、電腦實驗 、克利金模型 |
外文關鍵詞: | Fractional factorials, Bayesian design, computer experiments, kriging |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
部分因子實驗在科學界與業界的研發常被使用,而使用部分因子設計必然會使得因子效應之間產生混淆。在文獻上,效應混淆的議題在貝氏設計與電腦實驗中常使用的高斯隨機域模型下並未受到探討。此論文提出一高斯隨機域的線性結構,並在此結構下,分別對質性因子與量性因子探討高斯隨機域模型中效應混淆的議題。我們建立了高斯隨機域中效應的概念,並提出一衡量效應混淆嚴重程度的指標。此指標除了可呈現效應混淆的資訊外,亦涵蓋了模型複雜度的概念。我們也探討了效應混淆對模型一些統計性質上的影響,像是參數估計、效應的貝氏後驗共變異數矩陣以及預測變異數。
Effect aliasing is an inevitable consequence of using fractional factorial designs. For Gaussian random field models, advocated in some Bayesian design and computer experiment literature, the impact of effect aliasing has not received adequate attention. In this dissertation,
we establish a kind of linear model structure to define effects for a Gaussian random field, and study effect aliasing in Gaussian random field models under fractional factorial designs with qualitative and with quantitative factors individually. An aliasing severity index is proposed to assess the severity level of aliasing, for which the notion of priority order and model complexity is established. Some impacts of aliasing on parameter estimation, posterior variances of effects under a Bayesian framework, and prediction variance are addressed as well.
Abrahamsen, P. (1997), “A review of Gaussian random fields and correlation functions”, Technical report, Norwegian Computing Center, Box 114, Blindern, N0314 Oslo, Norway.
Adler, R. J. (2010), The Geometry of Random Fields, Society for Industrial and Applied Mathematics.
Adler, R. J. and Taylor, J. E. (2007), Random Fields and Geometry, Springer.
Ai, M. Y., Kang, L., and Joseph, V. R. (2009), “Bayesian optimal blocking of factorial designs”, Journal of Statistical Planning Inference, 3319–3328.
Ai, M. Y., Li, P. F., and Zhang, R. R. (2005), “Optimal criteria and equivalence for nonregular fractional factorial designs”, Metrika, 72–83.
Cheng, C. S. (2014), Theory of Factorial Design: Single- and Multi-Stratum Ex- periments, Chapman and Hall/CRC.
Cheng, C. S., Deng, L. Y., and Tang, B. (2002), “Generalized minimum aberra- tion and design efficiency for nonregular fractional factorial designs”, Statistica Sinica, 12, 991–1000.
Cheng, C. S., Steinberg, D. M., and Sun, D. X. (1999), “Minimum aberration and model robustness for two-level fractional factorial designs”, J. R. Statist. Soc. Ser. B, 61, 85–93.
Cheng, S. W. and Ye, K. Q. (2004), “Geometric isomorphism and minimum aber- ration for factorial designs with quantitative factors”, Annals of Statistics, 32, 2168–2185.
Cressie, N. A. (1993), Statistics for Spatial Data, J. Wiley.
Eccleston, J. A. and Hedayat, A. S. (1974), “On the theory of connected designs: characterization and optimality”, Annals of Statistics, 2, 1238–1255.
Johnson, R. A. and Wichern, D. L. (2007), Applied Multivariate Statistical Anal- ysis, Pearson Prentice Hall.
Joseph, R. V. (2006), “A Bayesian approach to the design and analysis of fractioned experiments”, Technometrics, 48, 219–229.
Joseph, R. V. and Delaney, J. D. (2007), “Functionally induced priors for the analysis of experiments”, Technometrics, 49, 1–11.
Joseph, R. V., Hung, Y., and Sudjianto, A. (2008), “Blind kriging: a new method for developing metamodels”, J. Mech. Des., 130, 1–8.
Joseph, V. R. and Wu, C. F. J. (2009), “Bayesian-inspired minimum aberration two- and four-level designs”, Biometrika, 96, 95–106.
Journel, A. G. and Huijbregts, C. J. (1978), Mining Geostatistics, Academic Press, London.
Kerr, M. K. (2001), “Bayesian optimal fractional factorials”, Statistica Sinica, 11, 605–630.
Khuri, A. (2003), Advance Calculus with Applications in Statistics, Wiley Series, 2nd edition.
Mandal, A. and Mukerjee, R. (2005), “Design efficiency under model uncertainty for nonregular fractions of general factorials”, Statistica Sinica, 697–707.
Mitchell, T. J., Morris, M. D., and Ylvisaker, D. (1990), “Exstence of smoothed stationary process on an interval”, Stochastic Processes and their Applications, 35, 109–119.
(1995), “Two-level fractional factorials and Bayesian prediction”, Statistica Sinica, 5, 559–573.
Qian, P. Z. G., Wu, H., and Wu, C. F. J. (2008), “Gaussian process models for computer experiments with qualitative and quantitative factors”, Technomet- rics, 50, 383–396.
Rasmussen, C. E. and Williams, C. K. I. (2006), Gaussian Processes for Machine Learning, The MIT Press.
Santner, T. J., Williams, B. J., and Notz, W. I. (2003), The Design and Analsis of Computer Experiments, Springer.
Stein, M. L. (1999), Interpolation of Spatial Data, Springer.
Steinberg, D. M. and Bursztyn, D. (2004), “Data analytic tools for understanding random field regression models”, Technometrics, 46, 411–420.
Tang, B. (2001), “Theory of J -chracteristic for fractional factorial designs and projection justification of minimum G2-aberration”, Biometrika, 93, 137–146.
Tang, B. and Deng, L. Y. (1999), “Minimum G2-aberration for nonregular frac- tional factorial designs”, Annals of Statistics, 27, 1914–1926.
Vecchia, A. V. (1988), “Estimation and identification for continuous spatial pro- cesses”, J. R. Statist. Soc. Ser. B, 50, 297–312.
Welch, W. J., Buck, R. J., Sacks, J., Wynn, H. P., Mitchell, T. J., and Morris,
M. D. (1992), “Screening, predicting and computer experiments”, Technomet- rics, 34, 15–25.
Wong, E. (1971), Stochastic Processes in Information and Dynamical Systems, McGraw-Hill Book Company.
Wu, C. F. J. and Hamada, M. (2009), Experiments: Planning, Analysis, and Optimization, Wiley Series, 2nd edition.
Xu, H. and Wu, C. F. J. (2001), “Generalized minimum aberration for asymmet- rical fractional factorial designs”, Annals of Statistics, 29, 1066–1077.