研究生: |
蔣依芸 Jian, Yi-Yun |
---|---|
論文名稱: |
透過群試對壓縮基因分型的研究 A Study of Compressed Genotyping via Group Testing |
指導教授: | 潘戍衍 |
口試委員: |
傅恆霖
張惠蘭 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 群試 、基因分型 |
外文關鍵詞: | Group Testing, Genotyping |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
群試有時被稱為測試的池子,可以應用到具有兩個可能結果的任意子集上,陰性的結果顯示S中的所有樣本都是陰性的,而陽性的結果表示S中有些樣本是陽性的。
基因分型是通過使用生物測定法檢查其DNA序列,並將其與另一個個體的序列或參照序列以判別個體的遺傳組成(基因型)的差異的過程。也就是說,基因分型是判斷個體中某些性狀的遺傳變異的過程。
廣為人知的,群試在DNA 的測序上扮演極為重要的角色,因此我們可以使用這個概念來判斷個體所有的基因型。在這篇論文中,我們主要使用disjunct 矩陣來實現目標。更確切地說,我們將使用d'-disjunct 矩陣和二階段的演算法去找到d個正的樣本,在d>d'的情況下 。
我們先從2-disjunct 矩陣A為例,找到一個具有3個1的二進制向量x,接著我們探討d和d'之間的關係 ,所得到的結論是﹔如果d和d'之間的差距不是太大的話,那麼我們的池子的設計可以運用。然而對於固定的d',如果d越大時,應用群試的方法可能會有困難,我們將舉一個例子,在上下文中顯示這個事實。
[1] E. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52:489–509, 2006.
[2] H. B. Chen. Combinatorial nonadaptive group testing with biological applications. Ph.D. Thesis, National Chiao Tung University, 2006.
[3] Y. Cheng, D. Z. Du, and G. Lin. On the upper bounds of the minimum number of rows of disjunct matrices. Springer-Verlag., pages 297–302, 2008.
[4] K. R. Chi. The year of sequencing. Nat. Methods, 5:11–14, 2008.
[5] S. Deschamps, V. Llaca, and G. D. May. Genotyping-by-sequencing in plants. Biology, 1:460–483, 2012.
[6] J. H. Dinitz and C. J. Colbourn. CRC handbook of Combinatorial Designs. CRC Press, 1996.
[7] D. Donoho. Compressed sensing. IEEE Trans. Inf. Theory, 52:1289–1306, 2006.
[8] D. Donoho and David L. Communications on Pure and Applied Mathematics. Wiley Periodicals, Inc., A Wiley Company, 2006.
[9] R. Dorfman. The detection of defective members of large populations. Ann. Math. Statist., 14:436–440, 1943.
[10] D. Z. Du and F. K. Hwang. Combinatorial Group Testing and Its Applications, 2nd. World Scientific, 2000.
[11] D. Z. Du and F. K. Hwang. Pooling Designs and Nonadaptive Group Testing Important Tools for DNA Sequencing. World Scientific, 2006.
[12] P. Erd¨os, P. Frankl, and D. F¨uredi. Families of finite sets in which no set is covered by the union of r others. Israel J. math., 51:79–89, 1985.
[13] Y. Erlich. Compressed genotyping. IEEE Trans. Inf. Theory, 56:706–723, 1984.
[14] H. L. Fu and F. K. Hung. A novel use of t-packing to construct d-disjunct matrices. Elsevier, Discrete Applied Mathematics, 154:1759 —- 1762, 2006.
[15] J. Lee and D. R. Stinson. A combinatorial approach to key predistribution for distributed sensor networks. Communications and Networking Conference, IEEE, 2:1200 -—1205, 2005.
[16] C. H. Li. A sequential method for screening experimental variables. J. Amer.
Statist. Assoc., 57:455–477, 1962.
[17] H. Q. Ngo and D. Z. Du. A survey on combinatorial group testing algorithms with applications to dna library screening. DIMACS Seriesin Discrete Mathematics and Theoretical Computer Science, 55:171–182, 2000.
[18] G. M. Sinha, H. Pesotan, and B. L. Raktoc. Some results on t-complete designs. Ars Combin., 13:195–201, 1982.
[19] W. D Wallis. Combinatorial designs. CRC Press, 1988.
[20] Z. X. Wan. Design Theory. Higher Education Press, 2009.