研究生: |
李家齊 Li, Jia-Qi |
---|---|
論文名稱: |
探討多種官能基之Bis(phenoxy-imine)鈷金屬錯合物在醋酸乙烯酯及丙烯酸甲酯之自由基聚合反應的調控 Polymerizaion of Vinyl Acetate and Methyl Acrylate by Various Bis(phenoxy-imine) Cobalt(II) Complexes |
指導教授: |
彭之皓
Peng, Chi-How |
口試委員: |
陳俊太
Chen, Jiun-Tai 王潔 Wang, Jane |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 鈷金屬調控自由基聚合反應 、自由基聚合 、鏈轉移 、醋酸乙烯酯 、丙烯酸甲酯 |
外文關鍵詞: | free radical polymerization, salen, acac, chain transfer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討與配位基salen*具有相似結構的配位基phenoxy-imine與鈷金屬形成CoII(phenoxy-imine)2。在結構方面有別於CoII(salen)*的平面四配位,但是和CoII(acac)2一樣同為四面體結構。將CoII(phenoxy-imine)2應用於單體醋酸乙烯酯以及丙烯酸甲酯的自由基聚合中,進行鈷調控自由基聚合反應 (Cobalt-mediated radical polymerization; CMRP)。我們選出了六種不同官能基的催化劑來當作探討的對象,並研究官能基影響自由基聚合的情形。
從實驗結果來觀察,發現催化劑對醋酸乙烯酯聚合反應控制的效果會隨著配位基的立體障礙性增加而得到改善,若是增加了推電子基的官能基,則會讓催化劑的性質偏向鏈轉移試劑。在丙烯酸甲酯的聚合反應中,發現 CoII(phenoxy-imine)2系列催化劑對於分子量皆沒有控制以及恆定的傾向,在丙烯酸甲酯的聚合中沒有任何效果,推測是因為丙烯酸甲酯聚合速度較快,且丙烯酸甲酯的自由基較為穩定,推斷鈷-碳鍵之間的鍵結較弱,因此不易控制丙烯酸甲酯聚合時的分子量。在此也可以知道 CoII(phenoxy-imine)2系列催化劑就如同 CoII(acac)2一樣,無法控制丙烯酸甲酯的聚合。
Ligand phenoxy-imine ligand is similar with salen*, but the structure of CoII(phenoxy-imine)2 and CoII(salen)* are different. The conformation of CoII(phenoxy-imine)2 is similar with CoII(acac)2 used in Cobalt-mediated radical polymerization are planar.
CoII(phenoxy-imine)2 mediate the radical polymerization with vinyl acetate and methyl acrylate. We choose six type of CoII(phenoxy-imine)2 to study the effect on the radical polymerization.
In the polymerization of vinyl acetate, the CoII(phenoxy-imine)2 with bulky ligand has better performance in controlling the molecular weight of the polymer during the polymerization.
In polymerization of methyl acrylate, the CoII(phenoxy-imine)2 can not control the molecular weight during the polymerization. The polymerize rate of methyl acrylate kp is larger than vinyl acetate and the radical of methyl acrylate is more stable than vinyl acetate. In other words, the Co-C bond of methyl acrylate is weaker than the vinyl acetate. So the methyl acrylate prefer to react each other than CoII(phenoxy-imine)2
1. Stevens, M. P., Polymer Chemistry An Introduction. New York Oxford, 1999.
2. Georges, M. K.; Moffat, K. A.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K., Narrow molecular weight resins by a free radical polymerization process; the effect of nitroxides and organic acids on the polymerization. Polym. Mater. Sci. Eng. 1993, 69, 305.
3. Kamigaito, M.; Ando, T.; Sawamoto, M., Metal-catalyzed living radical polymerization. Chem. Rev. 2001, 101, 3689-746.
4. Matyjaszewski, K.; Xia, J., Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921-2990.
5. Yamago, S.; Iida, K.; Yoshida, J-i., Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J. Am. Chem. Soc. 2002, 124, 2874-2875.
6. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process. Aust. J. Chem. 2005, 58, 379-410.
7. Perrier, S.; Takolpuckdee, P., Macromolecular design via reversible addition–fragmentation chain transfer (RAFT)/xanthates (MADIX) polymerization. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 5347-5393.
8. Braunecker, W. A.; Matyjaszewski, K., Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93-146.
9. Cunningham, M. F., Controlled/living radical polymerization in aqueous dispersed systems. Prog. Polym. Sci. 2008, 33, 365-398.
10. Ouchi, M.; Terashima, T.; Sawamoto, M., Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem. Rev. 2009, 109, 4963-5050.
11. Rosen, B. M.; Percec, V., Single-electron transfer and single-electron transfer degenerative chain transfer living radical polymerization. Chem. Rev. 2009, 109, 5069-5119.
12. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process–a third update. Aust. J. Chem. 2012, 65, 985-1076.
13. Peng, C.-H.; Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B., Living Radical Polymerization of Vinyl Acetate and Methyl Acrylate Mediated by Co (Salen*) Complexes. Polym. Chem. 2013, 4, 3098–3104.
14. Gao, H.; Matyjaszewski, K., Synthesis of functional polymers with controlled architecture by CRP of monomers in the presence of cross-linkers: from stars to gels. Prog. Polym. Sci. 2009, 34, 317-350.
15. Percec, V.; Barboiu, B., "Living" Radical Polymerization of Styrene Initiated by Arenesulfonyl Chlorides and CuI(bpy)nCl. Macromolecules 1995, 28, 7970-7972.
16. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K., ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18-37.
17. Moad, G.; Rizzardo, E.; Thang, S. H., Living Radical Polymerization by the RAFT Process - A Second Update. Aust. J. Chem. 2009, 62, 1402-1472.
18. Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G., Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 1998, 31, 5559-5562.
19. Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K., Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987-2988.
20. Hawker, C. J.; Bosman, A. W.; Harth, E., New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661-3688.
21. Debuigne, A.; Caille, J. R.; Jérôme, R., Highly Efficient Cobalt‐Mediated Radical Polymerization of Vinyl Acetate. Angewandte Chemie 2005, 117, 1125-1128.
22. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Organo-Cobalt Mediated Living Radical Polymerization of Vinyl Acetate. Macromolecules 2008, 41, 2368-2373.
23. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine) ruthenium (II)/methylaluminum bis (2, 6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 1995, 28, 1721-1723.
24. Wang, J.-S.; Matyjaszewski, K., Controlled/" living" radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615.
25. Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M., Living radical polymerization of acrylates by organocobalt porphyrin complexes. J. Am. Chem. Soc. 1994, 116, 7943-7944.
26. Hsu, C.-S.; Yang, T.-Y.; Peng, C.-H., Vinyl acetate living radical polymerization mediated by cobalt porphyrins: kinetic–mechanistic studies. Polym. Chem. 2014, 5, 3867-3875.
27. Kermagoret, A.; Debuigne, A.; Jérôme, C.; Detrembleur, C., Precision design of ethylene-and polar-monomer-based copolymers by organometallic-mediated radical polymerization. Nat. Chem. 2014, 6, 179-187.
28. Tokunaga, M.; Larrow, J. F.; Kakiuchi, F.; Jacobsen, E. N., Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 1997, 277, 936-938.
29. Sherwood, R. K.; Kent, C. L.; Patrick, B. O.; McNeil, W. S., Controlled radical polymerisation of methyl acrylate initiated by a well-defined cobalt alkyl complex. Chemical Communications 2010, 46, 2456-2458.
30. Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng, C.-H., Living radical polymerization of vinyl acetate and methyl acrylate mediated by Co(Salen*) complexes. Polym. Chem. 2013, 4, 3098-3104.
31. H. Tayloarnd, W. J., The Thermal Decomposition of Metal Alkys in Hydrogen-Ethylene Mixtures. J. Am. Chem. Soc. 1930, 52, 1111-1121.
32. Flory, P. J., The Mechanism of Vinyl Polymerizations. J. Am. Chem. Soc. 1937, 59, 241-253.
33. Gridnev, A. A., The 25th Anniversary of Catalytic Chain Transfer. J. POLYM. SCI. PART A: POLYM. CHEM. 2000, 38.
34. Gridnev, A. A., Features of the Radical Polymerization of Styrene and Methacrylates in the Presence of Cobalt-Oximes*. Polym. Sci. 1989, 31, 2369-2376.
35. A. Bakac, J. H. E., Unimolecular and Bimolecular Homolytic Reactions of Organochromium and Organocobalt Complexes. Kinetics and Equilibria. J. Am. Chem. Soc. 1984, 106, 5197-5202.
36. Heuts, J. P. A., Smeets, Niels M. B., Catalytic chain transfer and its derived macromonomers. Polymer Chemistry 2011, 2, 2407-2423.
37. Mayo, F. R., Chain Transfer in the Polymerization of Styrene: The Reaction of Solvents with Free Radicals. J. Am. Chem. Soc. 1943, 65, 2324-2329.
38. Makio, H.; Ochiai, T.; Tanaka, H.; Fujita, T., FI Catalysts: A Molecular Zeolite for Olefin Polymerization. Advanced Synthesis & Catalysis 2010, 352, 1635-1640.