簡易檢索 / 詳目顯示

研究生: 陳力銘
Chen, Li-Ming
論文名稱: 鋁添加於非晶氧化矽之電阻轉換行為之研究及其電極材料的影響
The study of resistive switching behavior of Al-added amorphous SiOx and electrode effect
指導教授: 張士欽
Chang, Shih-Chin
金重勳
Chin, Tsung-Shune
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 98
中文關鍵詞: 電阻式記憶體非晶矽基氧化物電阻轉換行為
外文關鍵詞: RRAM, amorphous, Si-based oxide, resistive switching
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電阻式記憶體(Resistive RAM)為近年來受到高度注意的新型非揮發性記憶體。韓國三星電子於2004年表示RRAM具有超越被譽為新一代夢幻記憶體MRAM(Magnetoresistive RAM)的潛力。RRAM更在2010年被EETimes美國版所選出的十項具潛力新興技術。RRAM有著讀寫速度快,結構簡單,驅動的電壓低,耗能低等優點,目前屬於發展初期的百家爭鳴階段,本實驗研究非晶氧化矽材料的電阻轉換行為,並在非晶氧化矽中添加的微量的鋁( < 2 at %)來誘發許多缺陷如氧空缺的產生,再加上製程參數的調整,控制不同程度的鋁添加量、鍍膜時候的氬氧比(Ar/O2 ratio)、以及Al-SiOx厚度等等,找出Al-SiOx的電阻轉換的鍍膜最佳參數,期望以Al-SiOx薄膜製程簡單,成本低,和半導體製程相容性極高的優勢,未來有潛力可以應用在RRAM上。
      最佳參數試片Pt/Al-SiOx(WAl = 15 W、PO2 = 15 %、厚度30 nm)/TiN表現單極電阻轉換行為,電性表現為:Foming電壓為15 V(CC 5 mA);循環次數100次以內RESET電壓為1V,SET電壓為2.2 V(CC 3 mA);最佳循環次數有676次,但中間會有兩次RESET電壓躍升;高低電阻態相當穩定,其比值為102;高低電阻態可以穩定維持達1 × 104秒。經過許多分析結果顯示出其電阻轉換機制屬於Thermochemical system,其導通路徑由氧空缺組成。
      透過更換上電極來探討不同電極對電性表現的影響,更換為Al上電極會造成Al/Al-SiOx交界面形成氧化物而失效;更換為Ti上電極則沒有改善電性表現;更換為Cu上電極後可以表現出單極或是雙極電阻轉換行為,其中雙極電轉換行為較穩定, forming電壓為2.2 V(CC 1 mA),RESET電壓-0.5 V,SET電壓0.6 V(CC 500 □A),循環次數達68次,高低電阻態比值有10。經過許多分析,結果顯示出雙極電阻轉換機制屬於Electrochemical Metallization System,靠Cu的氧化還原形成Cu的導通路徑;單極電阻轉換機制屬於Electrochemical Metallization System,同樣靠著Cu的還原形成Cu的導通路徑,但RESET靠Joule-heating。


    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論與研究動機 1 1.1 簡介 1 1.1.1 非揮發性記憶體的種類 1 1.1.1.1 磁阻式記憶體 (MRAM) 2 1.1.1.2 鐵電記憶體 (FeRAM) 3 1.1.1.3 相變化記憶體 (PRAM) 4 1.1.1.4 電阻式記憶體 (RRAM) 5 1.1.2 電阻轉換效應 5 1.1.3 電阻式記憶體的材料種類 7 1.1.3.1 鈣鈦礦結構材料 7 1.1.3.2 過鍍金屬氧化物 8 1.1.3.3 有機材料 10 1.2 研究動機 12 第二章 文獻回顧 13 2.1 二氧化矽材料簡介 13 2.2 矽基(Si-based)材料做為RRAM的近期研究 15 2.2.1 Cu-doped SiO2的研究 15 2.2.2矽基電阻器系統(Memristive system)之研究 18 2.3 電阻轉換機制(switching mechanism) 22 2.3.1 Electrochemical Metallization System 22 2.3.2 Valence Change System 23 2.3.3 Thermochemical system 25 2.4 漏電流傳導機制之簡介 25 2.4.1蕭基發射(Schottky Emission) 26 2.4.2普爾-法蘭克發射(Poole-Frenkel Emission) 27 2.4.3佛勒-諾德翰穿隧(Fowler-Nordheim Tunneling) 28 2.4.4空間電荷限制電流(Space-Charge Limited Current) 28 第三章 實驗方法與步驟 30 3.1 實驗流程 30 3.2 試片製備 30 3.2.1 下電極製備 30 3.2.2 鋁添加之二氧化矽(Al-SiOx)電阻層製備 31 3.2.3 上電極製備 31 3.3 量測與分析 32 3.3.1 薄膜厚度分析(α-step, FESEM) 32 3.3.2 薄膜結晶性分析(GIXRD) 33 3.3.3 薄膜成分分析(FE-EPMA) 34 3.3.4 化學鍵結分析(ESCA) 35 3.3.5 元件電性分析(Keithley 4200 SCS) 36 第四章 Pt/Al-SiOx/TiN之電阻轉換行為之研究 38 4.1 未添加之非晶二氧化矽(unadded a-SiOx) 38 4.2 不同鋁添加量(WAl)對於電性的影響及探討 41 4.2.1 Pt/Al-added a-SiOx(WAl = 5 W)/TiN之電性量測結果 42 4.2.2 Pt/Al-added a-SiOx(WAl = 10 W)/TiN之電性量測結果 44 4.2.3 Pt/Al-added a-SiOx(WAl = 15 W)/TiN之電性量測結果 46 4.2.4 Pt/Al-added a-SiOx(WAl = 20 W)/TiN之電性量測結果 50 4.2.5趨勢比較 52 4.3不同鍍膜氣氛氧分壓(PO2)對於電性的影響及探討 54 4.3.1 Pt/Al-added a-SiOx(PO2 = 5%)/TiN之電性量測結果 55 4.3.2 Pt/Al-added a-SiOx(PO2 = 10 %)/TiN之電性量測結果 56 4.3.3 Pt/Al-added a-SiOx(PO2 = 15 %)/TiN之電性量測結果 57 4.3.4 Pt/Al-added a-SiOx(PO2 = 20 %)/TiN之電性量測結果 57 4.3.5 Pt/Al-added a-SiOx(PO2 = 25 %)/TiN之電性量測結果 59 4.3.6 Pt/Al-added a-SiOx(PO2 = 40 %)/TiN之電性量測結果 61 4.3.7趨勢比較 62 4.4 不同厚度(Thickness)對於電性的影響及探討 64 4.4.1 Pt/Al-added a-SiOx(thickness 20 nm)/TiN之電性量測結果 65 4.4.2 Pt/Al-added a-SiOx(thickness 30 nm)/TiN之電性量測結果 67 4.4.3 Pt/Al-added a-SiOx(thickness 50 nm)/TiN之電性量測結果 67 4.4.4趨勢比較 69 4.5 薄膜結晶性分析 71 4.6 化學鍵結分析 71 4.7 Current Compliance (CC)的影響 72 4.7.1 不同CC對操作電壓的影響 73 4.7.2 不同CC對LRS電阻及抹除電流(reset current)的影響 74 4.8 機制探討 74 4.8.1 HRS與LRS阻值之Size effect 74 4.8.2 LRS阻值隨溫度的變化 75 4.8.3光學顯微鏡觀察 76 4.8.4電流電壓曲線分析 77 4.8.5 Pt/Al-SiOx/TiN的電阻轉換機制 78 第五章 TEs/Al-SiOx/TiN之電阻轉換行為研究 80 5.1 電極的選擇準則 80 5.1.1 以電極的功函數(work function)為選擇準則 80 5.1.2 以形成電極氧化物的自由能(free energy of formation of oxide)為選擇準則 81 5.1.3 綜合考量 82 5.2 我們的電極選擇 82 5.2.1 Al/Al-added a-SiOx/TiN元件之電性表現 82 5.2.2 Ti/Al-added a-SiOx/TiN元件之電性表現 83 5.2.3 Cu/Al-added a-SiOx/TiN元件之電性表現 85 5.2 Cu/Al-added a-SiOx/TiN之機制探討 88 5.2.1操作前後薄膜內部的Cu含量分析 88 5.2.2 LRS阻值隨溫度的變化 88 5.2.3 Cu/Al-SiOx/TiN的電阻轉換機制 89 5.2.3.1 URS的電阻轉換機制 90 5.2.3.2 BRS的電阻轉換機制 91 第六章 結論 92 第七章 參考文獻 94

    [1]簡昭欣、呂正傑、陳志遠、張茂男、許世傑、趙天生,“先進記憶體簡介, ” 國研科技創刊號
    [2]http://en.wikipedia.org/wiki/Flash_memory
    [3]http://www.lascon.co.uk/dh00300.htm
    [4]http://en.wikipedia.org/wiki/MRAM
    [5]http://thefutureofthings.com/articles/36/mram-the-birth-of-the-super-memory.html
    [6]http://en.wikipedia.org/wiki/FeRAM
    [7]http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html
    [8]http://techon.nikkeibp.co.jp/NEA/archive/200208/200150/
    [9]http://en.wikipedia.org/wiki/Pcram
    [10]M. Terao, T. Morikawa, and T. Ohta “Electrical Phase-Change Memory: Fundamentals and State of the Art,” Japanese Journal of Applied Physics 48, 080001 (2009)
    [11]http://en.wikipedia.org/wiki/RRAM
    [12]R. Waser, R. Dittmann, G. Staikov, and K. Szot “Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges,” Advanced Material 21, p.2632 – 2663 (2009)
    [13]http://en.wikipedia.org/wiki/Perovskite_(structure)
    [14]S.Q. Liu, N.J. Wu, and A. Ignatiev “Electric-pulse-induced reversible resistance change effect in magnetoresistive films,” Applied Physics Letters 76, 2749 (2000)
    [15]A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura “Hysteresis current-voltage characteristic and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Applied Physics Letters 85, 4073 (2004)
    [16]R. Fors, S. I. Khartsev, and A. M. Grishin “Giant resistance switching in metal-insulator-magnetite junctions: Evidence for Mott transition,” Physical Review B (Condensed Matter and Material Physics) 71 (4), 045305 (2005)
    [17]A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer “Reproducible switching effect in thin oxide films for memory applications,” Applied Physics Letter 77, p. 139–141 (2000)
    [18]C. Y. Liu, P. H. Wu, A. Wang, W. Y. Jang, J. C. Young, K. Y. Chiu, and T. Y. Tseng “Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film,” IEEE Electron Device Letter 26, 6 (2005)
    [19]C. Y. Lin, C. C. Lin, C. H. Huang, C. H. Lin, and T. Y. Tseng “Resistive switching properties of sol–gel derived Mo-doped SrZrO3 thin films,” Surface and Coating Technology 202, 1319 (2007)
    [20]B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” Journal of Applied Physics 98, 033715 (2005)
    [21]A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza “Switching characteristics of Cu2O metal-insulator-metal resistive memory,” Applied Physics Letters 91, 123517 (2007)
    [22]C. Y. Lin, C. Y. Wu, C. Y. Wu, C. C. Lin and T. Y. Tseng “Memory effect of RF sputtered ZrO2 thin films,” Thin Solid Films 516(2-4), 444-448 (2007)
    [23]H. Shima, F. Takano, H. Muramatsu, H. Akinaga, Y. Tamai, I. H. Inque, and H. Takagi “Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode,” Applied Physics Letters 93, 113504 (2008)
    [24]H. Y. Lee, P. S. Chen,T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. H. Lien “Electrical evidence of unstable anodic interface in Ru/HfOx /TiN unipolar resistive memory,” Applied Physics Letters 92, 142911 (2008)
    [25]W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai “Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications,” Applied Physics Letters 92, 022110 (2008)
    [26]S. Kim and Y. K. Choi “Resistive switching of aluminum oxide for flexible memory,” Applied Physics Letters 92, 223508 (2008)
    [27]C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki “Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2,” IEEE Transactions on electron devices 54, 10 (2007)
    [28]C. Rohde, B. J. Choi, D. S. Jeong, S. Choi,J. S. Zhao, and C. S. Hwang “Identification of a determining parameter for resistive switching of TiO2 thin films,” Applied Physics Letters 86, 262907 (2005)
    [29]D. S. Jeong, H. Schroeder, and R. Waser “Coexistence of Bipolar and Unipolar Resistive Switching Behaviors in a Pt/TiO2/Pt Stack,” Electrochemical and Solid-State Letters 10, 8 (2007)
    [30]L. E. Yu, S. Kim, M. K. Ryu, S.Y. Choi, and Y. K. Choi “Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications,” IEEE Transactions on electron devices 29, 4 (2008)
    [31]S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B. H. Park, Y. S. Kim, and I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J. S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park “Reproducible resistance switching in polycrystalline NiO films,” Applied Physics Letters 85, 23 (2004)
    [32]L. P. Ma, J. Liu, and Y. Yang “Organic electrical bistable devices and rewritable memory cells,” Applied Physics Letters 80, 16 (2002)
    [33]M. Colle, M. Bchel, and D. Dago M. de Leeuw “Switching and filamentary conduction in non-volatile organic memories,” Organic Electronics 7 , 305–312 (2006)
    [34]http://en.wikipedia.org/wiki/SiO2
    [35]http://www.seewellcn.com/images/products/500/XCM-005-SiO2_3_0.jpg
    [36]C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki “Bipolar and Unipolar Resistive Switching in Cu-Doped SiO2,” IEEE Transactions on electron devices 54, 10 (2007)
    [37]S. H. Jo, K. H. Kim, and W. Lu “High-Density Crossbar Arrays Based on a Si Memristive System,” Nano Letters 9, 2 (2009)
    [38]R. Waser, R. Dittmann, G. Staikov, and K. Szot “Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges,” Advanced Materials 21, 2632-2663 (2009)
    [39]N. Xu “A unified physical model of switching behavior in oxide-based RRAM,” (2008)
    [40]R. Waser, M. Aono “Nanoionics-based resistive switching memories,”Nature Material 6, 833 (2007)
    [41]李雅明 “固態電子學” 全華科技圖書股份有限公司 (1995)
    [42]http://farm1.static.flickr.com/216/501273517_3c6bf22375.jpg?v=0
    [43]http://commons.wikimedia.org/wiki/File:Bragg_diffraction.png
    [44]http://staff.chess.cornell.edu/~smilgies/ResearchInterests.html
    [45]吳泰伯 “X光繞射原理與材料結構分析” (1999)
    [46]林麗娟 “微結構分析技術之介紹” 工業材料雜誌, 181 (2002)
    [47]林俊龍 “AES/ESCA表面分析技術於工業材料上的應用” 工業材料雜誌, 106 (1995)
    [48]http://www.elenchina.com/product.do?method=view&id=4028801e1fa6ac99011fa6e34836003d
    [49]T.Y Lin, L.M Chen, S.C Chang, and T.S. Chin “Electrical resistance switching in Ti added amorphous SiOx,” Applied Physics Letters 95, 162105 (2009)
    [50]http://commons.wikimedia.org/wiki/File:Ellingham-diagram-greek.svg
    [51]S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J. S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park “Electrode dependence of resistance switching in polycrystalline NiO films,” Applied Physics Letters 87, 263507 (2005)
    [52]C. B. Lee, B. S. Kang, A. Benayad, M. J. Lee, S. E. Ahn, K. H. Kim, G. Stefanovich, Y. Park, and I. K. Yoo “Effects of metal electrodes on the resistive memory switching property of NiO thin films,” Applied Physics Letters 93, 042115 (2008)
    [53]W. Y. Yang and S. W. Rhee “Effect of electrode material on the resistance switching of Cu2O film,” Applied Physics Letters 91, 232907 (2007)
    [54]http://en.wikipedia.org/wiki/Temperature_coefficient

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE