簡易檢索 / 詳目顯示

研究生: 吳宏騏
Wu, Hung-Chi
論文名稱: 應用於微波/毫米波之矽基板氮化鎵無金高電子遷移率電晶體
Au-Free GaN-on-Si HEMTs for Microwave/Millimeter-Wave Applications
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員: 連羿韋
Lian, Yi-Wei
鄒權煒
Tsou, Chuan-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 75
中文關鍵詞: 無金製程矽基板氮化鎵接觸電阻低溫退火異質介面場效電晶體微波
外文關鍵詞: Au-free, GaN-on-Silicon, contact resistance, low temperature annealing, HEMT, microwave
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵材料擁有寬能隙、高電子飽和速度、高臨界電場與低導通電阻等優點,因此近年來,以氮化鎵材料為主的元件在高功率與高頻應用上相當受到重視。在不同的基板下,又以矽基板氮化鎵元件最受關注,他具有成本效益,矽基板氮化鎵(GaN-on-Silicon)的研究被視為未來的科技主流之一。
    一般常見的氮化鎵高電子遷移率電晶體是利用金(Au)來做歐姆接觸以及閘極電極,然而金的成本相對較高,因此成為了大規模生產的障礙之一。並且一般的歐姆接觸退火都在800℃以上以形成穿刺(spike)現象,使金屬往下鑽並且有效碰觸到二維電子氣通道,從而降低歐姆接觸電阻。但是在高溫的退火下,其金屬表面會變得非常粗糙且金在高溫下可能會穿過阻擋層並擴散到半導體基板中而導致閘極漏電流的增加。本實驗將採用無金製程並且搭配低溫退火的方式來取代傳統使用金的製程,從而降低元件製程成本與提高元件的可靠度。
    在本次論文中,我們採用相對簡單的Ti/Al的歐姆接觸取代傳統的Ti/Al/Ni/Au,透過蝕刻將二維電子氣通道吃穿,改以掘入的側壁與金屬形成直接接觸,並且搭配低溫550℃來進行退火,獲得最佳的接觸電阻(R_c)為0.28 Ω-mm,此方法能使金屬表面較為平坦,並且能使接觸電阻不會對掘入深度太過敏感。而我們測得的最大外部轉導為232 mS/mm,截止頻率為43.6 GHz,最大震盪頻率為66.7 GHz。


    Gallium Nitride (GaN)-based materials have the advantages of wide band gap, high electron saturation velocity, high critical electric field and low on-resistance. Therefore, GaN-based devices have received considerable attention in high power and high frequency applications. Among the of GaN-based devices grown on different substrates, the GaN-on-Silicon devices have attracted most attentions, which are very cost effective compared with the potential of large-scale wafer size. The GaN-on-silicon is considered as one of the mainstream technologies in the future.
    Au is usually used as one of the ohmic and gate metals in the conventional GaN HEMT. However, Au is with relatively high cost, which is one obstacle for mass production. Also, the typical ohmic contacts need annealing at above 800℃ to form metal spikes, so that metal drills down and effectively touches the two-dimensional electron gas channel, thereby reducing the ohmic contact resistance. However, at high temperature, the metal surface will become very rough and Au may pass through the barrier layer and diffuse into the semiconductor substrate causing increased leakage current. In this experiment, an Au-free process and a low-temperature annealing method will be used to replace the traditional process using Au, thereby reducing the cost of the device process and improving the reliability of the device.
    In this work, we replace the traditional Ti/Al/Ni/Au metal stack with a relatively simple Ti/Al ohmic contact. It is shown that the best contact resistance of 0.28 Ω-mm can be achieved with recess beyond the AlGaN Schottky barrier where the ohmic contacts are formed on the sidewall of the recess and anneal through a low temperature of only 550 C. This method can make metal surface relatively smooth and make the process relatively insensitive to the exact recess depth. The measured maximum extrinsic transconductance g_(m.max), current gain cutoff frequency f_T, and maximum oscillation frequency f_max are 232 mS/mm, 43.6 GHz, and 66.7 GHz, respectively.

    摘要 iii Abstract iv 誌謝 v 目錄 vi 圖表目錄 ix 表格目錄 xii 第一章 緒論 1 1.1 研究動機 1 1.2 論文架構 2 第二章 AlGaN/GaN材料特性與無金製程簡介 3 2.1 氮化鎵材料的特性 3 2.1.1 寬能隙半導體 4 2.1.2 電子遷移率與飽和速度 5 2.1.3 臨界電場與導通電阻 6 2.2 AlGaN/GaN異質介面場效電晶體 8 2.2.1 二維電子氣 (Two-dimensional electron gas, 2DEG) 8 2.2.2 自發性極化效應 9 2.2.3 壓電極化效應 10 2.3 高頻AlGaN/GaN異質介面之場效電晶體 14 2.3.1 單位增益截止頻率 (Unity Current gain frequency) 15 2.3.2 短通道效應 (Short channel effect) 15 2.4 本章總結 18 第三章 元件設計與製程步驟 19 3.1 無金製程的優勢 19 3.1.1 製程成本與未來發展性 19 3.1.2 改善金屬表面缺陷 19 3.1.3 降低接觸電阻的敏感性 20 3.2 文獻回顧 21 3.2.1 無金製程極低接觸電阻搭配上低溫退火[6] 21 3.2.2 優化無金製程之歐姆接觸與鋁擴散現象[25] 22 3.2.3 無金製程配合部分掘入與氟化陷阱電荷閘極結構[2] 23 3.3 黃光微影製程 (Photolithography) 24 3.4 元件隔離平台 (Mesa isolation) 27 3.5 歐姆接觸 (Ohmic contact) 29 3.5.1 表面處理 31 3.5.2金屬層蒸鍍 33 3.5.3 低溫熱退火處理(Low temperature Thermal Annealing) 33 3.6 蕭特基閘極製作 (Schottky gate) 35 3.6.1 電子束微影製程 (E-beam lithography) 36 3.7 鈍化層製作 (Passivation) 38 3.8 接線窗口蝕刻 (Via etching) 39 3.9 襯墊金屬(Pad metal) 41 3.10 量測方法 (Measurement Method) 42 3.10.1 傳輸線長度量測法 (Transfer Length Method, TLM) 42 3.10.2 高頻量測 45 3.11 本章總結 46 第四章 元件模型分析 47 4.1 外部參數萃取以及去嵌入 (De-embedding) 47 4.1.1 開路與短路測試法 (Open pad & Short pad) 48 4.1.2 Cold-FET量測元件萃取法 50 4.2 高頻元件小訊號等效模型建立及分析 55 4.4 本章總結 55 第五章 量測結果與比較 56 5.1 元件尺寸參數 56 5.2 直流量測結果 58 5.2.1 3000Ω•cm阻值基板Lg=0.2元件量測結果與分析 58 5.3 元件高頻量測結果 61 5.4 元件等效模型分析 63 第六章 總結 65 6.1 總結(Conclusion) 65 6.2 未來工作(Future work) 66 References 71

    [1]M. Van Hove et al., "Fabrication and performance of Au-free AlGaN/GaN-on-silicon power devices with Al_2 O_3 and Si_3 N_4/Al_2 O_3 gate dielectrics," IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3071-3078, Oct. 2013, doi: 10.1109/TED.2013.2274730.
    [2]H. Huang, Y. C. Liang, G. S. Samudra and C. L. L. Ngo, "Au-free normally-off AlGaN/GaN-on-Si MIS-HEMTs using combined partially recessed and fluorinated trap-charge gate structures," IEEE Electron Device Lett., vol. 35, no. 5, pp. 569-571, May 2014, doi: 10.1109/LED.2014.2310851.
    [3]H. Lee, D. S. Lee and T. Palacios, "AlGaN/GaN high-electron-mobility transistors fabricated through a Au-Free technology," IEEE Electron Device Lett., vol. 32, no. 5, pp. 623-625, May 2011, doi: 10.1109/LED.2011.2114322.
    [4]M. Fan et al., "Ultra-low contact resistivity of < 0.1Ω∙mm for Au-free TixAly alloy contact on non-recessed i-AlGaN/GaN," IEEE Electron Device Lett., vol. 41, no. 1, pp. 143-146, Jan. 2020, doi: 10.1109/LED.2019.2953077.
    [5]J. Yao et al., "An Au-free GaN high electron mobility transistor with Ti/Al/W ohmic metal structure," 2015 IEEE 22nd International Symposium on the Physical and Failure Analysis of Integrated Circuits, Hsinchu, 2015, pp. 419-422, doi: 10.1109/IPFA.2015.7224415.
    [6]J. Zhang et al., "Ultralow-contact-resistance Au-free ohmic contacts with low annealing temperature on AlGaN/GaN heterostructures," IEEE Electron Device Lett., vol. 39, no. 6, pp. 847-850, June 2018, doi: 10.1109/LED.2018.2822659.
    [7]X. Li, S. Gao, Q. Zhou, X. Liu, W. Hu and H. Wang, "Fabrication and performance of Ti/Al/Ni/TiN Au-free ohmic contacts for undoped AlGaN/GaN HEMT," IEEE Trans. Electron Devices, vol. 67, no. 5, pp. 1959-1964, May 2020, doi: 10.1109/TED.2020.2982665.
    [8]W. Jatal, U. Baumann, K. Tonisch, F. Schwierz and J. Pezoldt, "High-frequency performance of GaN high-electron mobility transistors on 3C-SiC/Si substrates with Au-free ohmic contacts," IEEE Electron Device Lett., vol. 36, no. 2, pp. 123-125, Feb. 2015, doi: 10.1109/LED.2014.2379664.
    [9]T. Huang, X. Zhu and K. M. Lau, "Enhancement-mode AlN/GaN MOSHFETs on Si substrate with regrown source/drain by MOCVD," IEEE Electron Device Lett., vol. 33, no. 8, pp. 1123-1125, Aug. 2012, doi: 10.1109/LED.2012.2198911.
    [10]Xin Kong, Ke Wei, Guoguo Liu and Xinyu Liu, "Role of Ti/Al relative thickness in the formation mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures, " Journal of Physics D: Applied Physics.
    [11]Ambacher, "Growth and applications of group III-nitrides, " J. Physics D (Applied Physics), vol. 31, pp. 2653-2710, 1998.
    [12]Likun Shen , "Advanced polarization-based design of AlGaN/GaN HEMTs, " PhD thesis, University of California, Santa Barbara, 2004.
    [13]B. Gelmont, K. Kim, and M. Shur, "Monte carlo simulation of electron transport in gallium nitride, " J. Appl. Phys., 74 (3), pp. 1818-1821, 1993.
    [14]B. J. Baliga, "Trends in power semiconductor devices," IEEE Trans. Electron Devices, vol. 43, no. 10, pp. 1717-1731, Oct. 1996, doi: 10.1109/16.536818.
    [15]Lunchun Guo, Xiaoliang Wang, Cuimei Wang, Hongling Xiao, Junxue Ran, Weijun Luo, Xiaoyan Wang, Baozhu Wang, Cebao Fang, Guoxin Hu, "The influence of 1nm AlN interlayer on properties of the Al_0.3 Ga_0.7 N/AlN/GaN HEMT structure," Microelectronics Journal, vol.37, pp.777-781, January 2008.
    [16]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N-and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol.85, pp. 3222-3233, May 1999.
    [17]I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys., vol. 94, no. 6, pp. 3675–3696, Sep. 2003.
    [18]A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini, “First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: comparison of local and gradient-corrected density-functional theory,” Phys. Rev. B, vol. 64, pp. 045208–045213, 2001.
    [19]D. Marcon, B. De Jaeger, S. Halder, N. Vranckx, G. Mannaert, M. Van Hove, and S. Decoutere, "Manufacturing challenges of GaN-on-Si HEMTs in a 200 mm CMOS fab, " IEEE Trans. Semiconductor Manufacturing, vol. 26, no. 3, pp. 361-367, Aug. 2013.
    [20]Fabio Sacconi, Aldo Di Carlo, P. Lugli, Hadis Morkoc, "Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs." IEEE Trans. Electron Devices, pp. 450-457, March 2001.
    [21]G. H. Jessen, R. C. Fitch, J. K. Gillespie, G. Via, A. Crespo,D. Langley, D. J. Denninghoff, M. Trejo, and E. R. Heller, "Short-channel effect limitations on high-frequency operation of AlGaN/GaN HEMTs for T-gate devices, " IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2589–2597, Oct. 2007.
    [22]K. Shiojima and N. Shigekawa, “Thermal stability of sheet resistance in AlGaN/GaN 2DEG structure,” phys. status solidi (c), vol. 0, no. 1, pp. 397-400, 2003, doi: 10.1002/PSSC.200390071.
    [23]A. Messica, U. Meirav, and H. Shtrikman, “Refractory metal-based low-resistance ohmic contacts for submicron GaAs heterostructure devices,” Thin Solid Films, vol. 257, no. 1, pp. 54-57, Feb. 1995, doi: 10.1016/0040-6090(94)06346-x.
    [24]R. Gong, J. Wang, S. Liu, Z. Dong, M. Yu, C. P. Wen, Y. Cai, and B. Zhang, “Analysis of surface roughness in Ti/Al/Ni/Au ohmic contact to AlGaN/GaN high electron mobility transistors,” Appl. Phys. Lett., vol. 97, no. 6, p. 062115, Aug. 2010, doi: 10.1063/1.3479928.
    [25]H. Sun, M. Liu, P. Liu, X. Lin, J. Chen, M. Wang, and D. Chen, “Optimization of Au-free ohmic contact based on the gate-first double-metal AlGaN/GaN MIS-HEMTs and SBDs process,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 622-628, Feb. 2018, doi: 10.1109/TED.2017.2778072.
    [26]Lin, Y.-K.; Bergsten, J.; Leong, H.; Malmros, A.; Chen, J.-T.; Chen, D.-Y.; Kordina, O.; Zirath, H.; Chang, E.Y.; Rorsman, N. "A versatile low-resistance ohmic contact process with ohmic recess and low-temperature annealing for GaN HEMTs. " Semicond. Sci. Technol. 2018, 33, 095019.
    [27]K. Majumdar et al., "Statistical demonstration of silicide-like uniform and ultra-low specific contact resistivity using a metal/high-k/Si stack in a sidewall contact test structure," 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, 2014, pp. 1-2, doi: 10.1109/VLSIT.2014.6894423.
    [28]Liang Wang, Dong-Hyun Kim, and Ilesanmi Adesida, "Direct contact mechanism of ohmic metalliztion to AlGaN/GaN heterostructures via ohmic area resess etching," applied physics letters 95, Nov. 2009
    [29]R. Vetury, N. Q. Zhang, S. Keller, and U. K. Mishra, "The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs," IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
    [30]F. Qian, J. H. Leach, and H. Morkoc, "Small signal equivalent circuit modeling for AlGaN/GaN HFET: hybrid extraction method for determining circuit elements of AlGaN/GaN HFET, " Proc. IEEE, vol. 98, no. 7, pp. 1140–1150, Jul. 2010.
    [31]魏上棋, "低阻值矽基板之高頻氮化鋁鎵/氮化鎵HEMTs之設計與製作," 國立清華大學電子工程研究所碩士論文, 2018.
    [32]C. Tsou, C. Lin, Y. Lian and S. S. H. Hsu, “101-GHz InAlN/GaN HEMTs on silicon with high Johnson’s figure-of-merit,” IEEE Trans. Electron Devices, vol. 62, no. 8, pp. 2675-2678, Aug. 2015, doi: 10.1109/TED.2015.2439699.

    QR CODE