研究生: |
蔣宗儒 Jiang, Zong-Ru |
---|---|
論文名稱: |
沒有玻璃管的毛細現象 Capillary Action Without a Glass Tube |
指導教授: |
洪在明
Hong, Tzay-Ming |
口試委員: |
施宙聰
Shy, Jow-Tsong 蕭百沂 Hsiao, Pai-Yi 曹恆光 Tsao, Heng-Kwong 陳宣毅 Chen, Hsuan-Yi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 毛細現象 、圓柱 、環 、管 、薄膜 、作用力 、表面張力 、自相似 、普遍性 |
外文關鍵詞: | CapillaryAction, cylinder, ring, tube, film, force, SurfaceTension, self-similar, universal |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液體有很多特別的現象,譬如毛細現象、虹吸現象等。毛細現象是液體在
細管或多孔物體內部,由液體與物體的附著力和因液體分子間內聚力而產生的
表面張力組合而成,令液體在不需要施加外力的情況下,流向細管狀物體或細
縫的現象[6]。只存在於大氣狀態下的水位還要高,即表面張力所產生的能量與
水位高度差的能量相等。
我們發現將鋁環拉出水或甘油面後,環中間的液面會抵抗重力而提升到比
周圍的液面高,類似毛細現象。由於我們的實驗裝置並不具有細管狀物體,因
此希望釐清它背後的物理機制和一般毛細有什麼不同,並進而探討它獨有的特
色,例如如果鋁環上方從原本開放改成封閉,或是直接換成實心的鋁圓柱。我
們將系統地比較這三種不同的裝置下,液柱高度和外界拉力如何隨環或圓柱提
升高度改變,並關心液體柱從可逆到不可逆的轉換,以及最終斷裂的方式 – 當
它採取的是類似液滴截斷成兩顆的 pinch-off,我們使用高速攝影機仔細觀察其
細頸的最小半徑及附近的輪廓,如何隨倒數時間演化,討論它是否具備自我相
似及普遍性性質。
最終,我們認為這個仿毛細現象的研究,可以應用到微型機器人在潮濕地
面的行動,想像我們穿藍白拖鞋在雨天地面行走時,普塔普塔的拉力是如何隨
鞋底和地面高度而改變,這關係到微型機器人的平衡。這種能量耗損有異於我
們熟悉的靜與動摩擦力,它是否也具備類似的「只跟正向力有關,和接觸面積
無關」性質,也是我們這篇論文會討論的。
The liquid is a fascinating system with many special phenomena, such as capillary
and siphon. The former describes the elevation or movement of a liquid column inside
a thin tubular object or a porous object, which property has been understood to arise
from the combination of adhesion between liquid/solid wall and the surface tension
generated by the cohesive force between liquid molecules.
We observed a similar phenomenon by pulling an aluminum ring out of a liquid.
Inside the cylindrical liquid curtain, the liquid was found to rise above the level outside.
How does the length of this capillary-like column increase with the height of the ring?
What happens if we seal the top of the ring, i.e., prohibit the air inside the ring (or close
hollow cylinder) from flowing? Furthermore, what if we replace the ring or hollow
cylinder with a solid cylinder? Finally, how does the transition from reversible to
irreversible regions vary among these three different designs? As for the eventual
breakage of the liquid column and/or curtain, we were also interested in exploring and
comparing it with the famous pinch-off phenomenon, in particular, whether the profile
and minimum radius of the liquid cross-section exhibit self-similarity and universal
properties.
One interesting area comes to our mind for application. That is the movement of a
mini-robot on a wet surface. Aside from the common frictions, static and dynamic, the
robot needs to lift its foot from time to time. The water or whatever liquid that wets the
surface is going to drag its foot, while the foot tries to balance and enable the pulling
motion.
[1] P. Marmottant and E. Villermaux, “Fragmentation of stretched liquid
ligaments”, Phys. Fluids 16, 2732 (2004).
[2] P. M. Reis, S. Jung, J. M. Aristoff, and R. Stocker, “How cats lap: Water uptake
by Felis catus”, Science 330, 1231 (2010).
[3] Y. J. Chen and P. H. Steen, “Dynamics of inviscid capillary breakup: Collapse
and pinch off of a film bridge”, J. Fluid Mech. 341, 245 (1997).
[4] R. F. Day, E. J. Hinch and J. R. Lister “Self-similar capillary pinchoff of an
inviscid fluid”, Phys. Rev. E 80, 704(1998).
[5] Y. C. Cheng, T. H. Hsieh, J. C. Tsai, and T. M. Hong, “Phase diagram and
snap- off transition for twisted party balloons”, Phys. Rev. E 104, 045004
(2021).
[6] W. C. Li, C. Y. Shih, T. L. Chang and T. M. Hong, “Self-similarity with
universal property for soap film and bubble in roll-off stage”, arXiv
2206.00180 (2022).
[7] 维基百科编者, “毛細現象”,维基百科,2021 年 11 月 25 日:
https://zh.wikipedia.org/w/index.php?title=%E6%AF%9B%E7%BB%86%E
7%8E%B0%E8%B1%A1&oldid=68808187.
[8] C. Y. Chien,“Canny edge detector 實作(OpenCV)”,2018 年 8 月 4 日:
https://medium.com/@pomelyu5199/canny-edge-detector-
%E5%AF%A6%E4%BD%9C-opencv-f7d1a0a57d19
[9] 李偉志,“肥皂膜與肥皂泡的緊縮”,國立清華大學物理研究所碩士論文
(2021)。
[10] L. Vincent, T. Xiao, D. Yohann, S. Jung and E. Kanso, “Dynamics of water
entry”, J. Fluid Mechanics 846, 508 (2018).
[11] L. B. Smolka and T. P. Witelski, “Biaxial extensional motion of an inertially
driven radially expanding liquid sheet”, Phys. Fluids 25, 062105 (2013).
[12] S. A. Cryer and P. H. Steen, ‘‘Collapse of the soap-film bridge: Quasistatic
description’’, J. Colloid Interface Sci. 154, 276 (1992).
[13] A. Huerre, V. Miralles and M. C. Jullien, “Bubbles and foams in microfluidics.”
Soft Matter 10, 6888 (2014).
[14] S. S. Thete1, C. Anthony1, P. Doshi, M. T. Harris1, and O. A. Basaran, “Self-
similarity and scaling transitions during rupture of thin free films of
Newtonian fluids”, Phys. Fluids 28, 092101 (2016).
37
[15] A. I. Pesci, R. E. Goldstein, G. P. Alexander and H. K. Moffatt, “Instability of
a Möbius Strip Minimal Surface and a Link with Systolic Geometry”, Phys.
Rev. Lett. 114, 127801(2015).
[16] A. S. Utada, A. Fernandez-Nieves, H. A. Stone and D. A. Weitz, “Dripping to
Jetting Transitions in Coflowing Liquid Streams”, Phys. Rev. Lett. 99. 094502
(2007).
[17] S. Kumar and G. Mishra, “Hysteretic behavior in three-dimensional soap film
rearrangements”, Phys. Rev. Lett. 110, 258102 (2013)
[18] J. Erlebacher, “Two Fluid Drop Snap-Off Problem: Experiments and Theory”,
Phys. Rev. Lett. 106, 225504 (2011).
[19] L. Salkin, A. Schmit, P. Panizza and L. Courbin, “Generating Soap Bubbles
by Blowing on Soap Films”, Phys. Rev. Lett. 116, 077801 (2016).
[20] I. Cohen and S. R. Nagel, “Testing for scaling behavior dependence on
geometrical and fluid parameters in the two fluid drop snap-off problem”,
Phys. Fluids 13, 3533 (2001).
[21] H. Lee, J. S. Lowengrub and J. Goodman, “Modeling pinchoff and
reconnection in a Hele-Shaw cell. II. Analysis and simulation in the nonlinear
regime”, Phys. Fluids 14, 492 (2002).
[22] M. P. Brenner, X. D. Shi and S. R. Nagel, “Iterated Instabilities during Droplet
Fission”, Phys. Rev. Lett. 73, 3391 (1994).
[23] X. D. Shi, M. P. Brennerand and S. R. Nagel, “A cascade of structure in a drop
falling from a faucet”, Science 265, 219 (1994).
[24] Jens Eggers and E. Villermaux, “Physics of Liquid Jets”, Rep. Prog. Phys. 71,
036601 (2008).
[25] A. A. Darhuber, S. M. Troian and S. Wagner, “Physical mechanisms
governing pattern fidelity in microscale offset printing”, J. Appl. Phys. 90,
3602 (2001).
[26] Y. E Liang, Y. H Weng, H. K Tsao and Y. J Sheng, “Meniscus Shape and
Wetting Competition of a Drop between a Cone and a Plane”, Langmuir 32,
33, 8543 (2019).