研究生: |
楊奇達 Chyi-Da Yang |
---|---|
論文名稱: |
光纖通訊用高速高效率砷化銦鎵P-I-N檢光器 High Bandwidth with High Efficiency InGaAs P-I-N Photodiodesfor Optical Fiber Communications |
指導教授: |
吳孟奇
Meng-Chyi Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 英文 |
論文頁數: | 109 |
中文關鍵詞: | 邊縁耦合式感測器 、自行終止氧化物延磨 、自行對準氏擴散 、晶相蝕刻 、光漏斗 、波導 |
外文關鍵詞: | EC-PD, STOP, SAD, crystallographic etching, light funnel, waveguide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在高速、高密度的光纖通訊系統中,單石化砷化銦鎵檢光器陣列,相較於複合式陣列,提供更一致、更可靠的檢光器特性以及較低廉的生產成本。而其中邊緣入射型檢光器,在與邊緣發射型雷射或波導整合時,比起傳統面入射型檢光器,可採用更簡易的整合方式,因而得以進一步降低整體成本。然除受磊晶品質、元件製程影響外,邊緣入射型檢光器的光入射面尚易受元件後續處理所影響,諸如劈裂、鍍抗反射層,以至於儲放環境等。是以此類陣列的實現,隨著陣列中的檢光器數目增加而大幅趨於困難。截至目前,相關文獻以至於技術上的資訊因而十分稀少。
本研究將計畫以有機金屬氣相沈積技術成長高品質磊晶結構,並已現有檢光器前續製程,搭配將研發之光耦合面處理製程,以砷化銦鎵邊緣耦合型p-i-n檢光器陣列為研製目標。
As wide-bandwidth, high-capacity communications via optical fiber is demanded, high-speed optoelectronic devices for message transmission and reception play major roles in promoting overall system performances. In this dissertation, InGaAs edge-coupled photodiodes (EC-PDs) with a light funnel integrated (LIFI) in front of the coupling aperture, called LIFI EC-PD, have successfully fabricated based on the self-terminated oxide polish (STOP), the crystallographic slope etching of InP, and the self-aligned diffusion (SAD) techniques. The LIFI EC-PD presents not only a lower dark current density (~4.4 mA/cm2) but also a higher responsivity (~0.4 A/W) than that of the mesa EC-PD (27 mA/cm2 and 0.26 A/W, respectively). Furthermore, the thick oxide film serves as the funnel in front of active-region aperture to enhance the coupling efficiency and to lower the bonding pad capacitance down to 50 fF. The lowered bonding pad capacitance can be beneficial in designing a device with a higher transit-time-limited frequency response of beyond 30 GHz. The LIFI EC-PD with a 1-µm thick absorption layer exhibits a 3-dB bandwidth of 20 GHz and a responsivity of ~0.4 A/W. A further improved novel high-speed waveguide photodetectors (WGPDs) integrated with a light input tapered-SiOx facet exhibiting extremely low dark current density and high responsivity characteristics of 0.74 A/W from 0.39 A/W of the device without light input tapered-SiOx facet has successfully been developed. The novel WGPDs can have an enlarged coupling aperture with responsivities and reduced dissipative absorption, which result from the reflection of an InP-slope and a p-metal, and thus permit more light to enter its absorption layer. Accordingly, such ground-breaking WGPD, exhibiting a 3-dB bandwidth of 20 GHz with a coupling efficiency of 0.74 A/W at a wavelength of 1.3-μm under 132.5 μW illuminations, can explore a better manufacturing competence.
[1] J. E. Bowers, and C. A. Burrus, “Ultrawideband long-wavelength p-i-n photodetectors,” J. Lightwave Technol., vol. LT-5, pp. 1339-1350,1987.
[2] S. R. Forrest, “In0.53Gs0.47As photodiodes with dark current limited by generation-recombination and tunneling,” Appl. Phys. Lett., vol. 37, pp. 322-325, Aug. 1980.
[3] G. A. Porkolab, Y. J. Chen, S. A. Merritt, Seyed Ahmad Tabatabaei, Sambhu Agarwala, F. G. Johnson, Oliver King, M. Dagenais, R. A. Wilson, and D. R. Stone, “Wet-chemistry surface treatment for dark-current reduction that preserves lateral dimensions of reactive ion etched Gs0.47In0.53As p-i-n diode photodetectors,” IEEE Photon. Technol. Lett., vol. 9, No. 4, Apr. pp.490-492,
[4] R.-T. Huang and D. Renner, “Improvement in dark current characteristic and long-term stability of mesa InGaAs/InP p-i-n photodiodes with two-step SiNx surface passivation,” IEEE Photon. Technol. Lett., vol. 3, pp. 934-936, 1991.
[5] D.-S. Kim, C.-P. Chao, K. Beyzavi, P. E. Burrows, and S. R. Forrest, “Surface passivation of InP/ In0.53Gs0.47As heterojunction bipolar transistors for opto-electronic integration,” J. Electron. Mater., vol. 25, pp. 537-540, 1996.
[6] T. Takeuchi, K. Makita, and K. Taguchi, “A planar slab-waveguide photodiode with a pseudowindow region in front of the waveguide,” IEEE Photon. Technol. Lett., vol. 10, pp. 255-257, 1998.
[7] C. L. Ho, M. C. Wu, W. J. Ho, J. W. Liaw, and H. H. Wang, “Effectiveness of the pseudowindow for edge-coupled InP-InGaAs-InP PIN photodiodes,” IEEE J. Quantum Electron., vol. 36, no. 3, pp. 333-339, 2000.
[8] Vincent Magnin, Louis Giraudet, Joseph Harari, J. Decobert, P. Pagnot, E. Noucherez, and Didier Decoster, ”Design, optimization, and fabrication of side-illuminated p-i-n photodetectors with high responsivity and high alignment tolerance for 1.3- and 1.55-μm wavelength use,” J. Lightwave Technol., vol. 209, pp. 477-4880, 2002.
[9] Robert B. Taylor, Paul E. Burrows, and Stephen R. Forrest, “An integrated, crystalline organic waveguide-coupled InGaAs photodetector,” IEEE Photon. Technol. Lett., vol. 9, pp. 365-367, 1997.
[10] R. J. Deri, W. Doldissen, R. J. Hawkins, R. Bhat, J. B. D. Soole, L. M. Schiavone, M. Seto, N. Andreakis, Y. Silverberg, and M. A. Koza, “Efficient vertical coupling of photodiodes to InGaAs rib waveguide,” Appl. Phys. Lett., vol. 58, pp. 2749-2751, 1991.
[11] K. Kato, S. Hata, A. Kozen, S. Oko, S. Matsumoto, and J. Yoshida, “22 GHz photodiode monolithically integrated with optical waveguide on semi-insulating InP using novel butt-joint structure,“ Electron. Lett., vol. 28, pp. 1140-1142, 1992.
[12] F. Hieronymi, E. H. Bottcher, E. Droge, D. Kuhl, St. Kollakowski and D. Bimberg, ”Large-area low-capacitance InP/InGaAs MSM photodetectors for high-speed operation under front and rear illumination,” Electron. Lett., vol.30, pp.1247-1248, 1994
[13] J. E. Bowers, E. L. Hu, Tan I-Hsing, B. I. Miller, ”Modeling and performance of wafer-fused resonant-cavity enhanced photodetectors,” IEEE J. Quantum Electron., vol. 27, pp. 1863-1875, Oct. 1995.
[14] H. Bourdoucen, and J. A. Jervase, ”Design of ultra-fast dual-wavelength resonant-cavity-enhanced Schottky photodetectors,” IEEE J. Quantum Electron., vol. 37, pp. 63-68, Issue 1 , Jan. 2001.
[15] C. C. Barron, C. J. Mahon, B. J. Thibeault, G. Wang, W. Jiang, L. A. Coldren, and J. E. Bowers, ”Resonant-cavity-enhanced pin photodetector with 17 GHz bandwidth-efficiency product,” Electron. Lett., vol. 30, pp. 1796-1797, 1994.
[16] A. Dodabalaput and T. Y. Chang, “Resonant-cavity InGaAlAs/InGaAs/InAlAs phototransistors with high gain for 1.3-1.6μm,” Appl. Phys. Lett., vol. 60, pp. 929-931, 1992.
[17] A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, and C. Lei, “High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode,” Electron. Lett., vol. 27, pp. 2125-2127, 1991.
[18] M. J. Mondry, D. I. Babic, J. E. Bowers, and L. A. Coldren, “Refractive indexes of (AlGaIn)As epilayers on InP for optoelectronic applications,” IEEE Photon. Technol. Lett., vol. 4, pp. 627-630, 1992
[19] S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications,” J. Appl. Phys., vol. 58 , pp. R1-29, 1985.
[20] W. K. Chan and E. Yablonovitch,” Van der Waals bonded III-V films for optoelectronic,“ Proc. 1st Int. Symp. on Semiconductor Wafer Bonding : Science, Technology and Applications, Pennington, NJ, USA, pp.123-131, 1992
[21] H. Schumacher, T. J. Gmitter, H. P. LeBlanc, R. Bhat, E. Yablonovitch, and M. A. Koza,” High-speed InP/GaInAs photodiode on sapphire substrate,” Electron. Lett., vol. 22, pp. 1653-1654, 1989
[22] C. Caneau, W. K. Chan, F. De Rosa, T. J. Gmitter, B. P. Hong, J. I. Song, P. F. Micelli, and D. M. Shah, “Epitaxial lift-off GaAs HEMT's,” IEEE Trans. Electron Devices, vol. 42, pp. 1877-1881, Nov. 1995.
[23] R. Bhat, G. L. Christenson, M. Hong, Y. H. Lo, J. P. Mannaerts, A. T. T. D. Tran, and Z. H. Zhu, “Long-wavelength resonant vertical-cavity LED/photodetector with a 75-nm tuning range,” IEEE Photon. Technol. Lett., vol. 9, pp. 725 -727, 1997.
[24] K. Shimomura, and T. Yamagata, “High responsivity in integrated optically controlled metal-oxide semiconductor field-effect transistor using directly bonded SiO2 –InP,” IEEE Photon. Technol. Lett., vol. 9, pp. 1143 -1145,1997.
[25] Bell Lab. T. P. Lee, C. A. Burrus, A. G. Dentai, and K. Ogawa, “Small area InGaAs/InP p-i-n photodiodes: fabrication, characteristics and performance of devices in 274Mb/s and 45Mb/s lightwave receivers at 1.31 μm wavelength”, Electron. Lett., vol. 16, pp. 155-156, 1980.
[26] NTT N. Susa, Y. Yamauchi, and H. Kanbe, “Punch-through type InGaAs photodetector fabricated by vapor-phase epitaxy”, IEEE J. Quantum Electron., vol. 16, pp. 542-545, 1980.
[27] Bell Lab. T. P. Lee, C. A. Burrus, and A. G. Dentai, “InGaAs/InP p-i-n photodiodes for lightwave communications at the 0.95-1.65 μm wavelength”, IEEE J. Quantum Electron., vol. 17, pp. 232-238, 1981.
[28] Y. Le Bellego, J. P. Praseuth, F. Lugiez, L. Giraudet, and A. Scavennec, “High-responsivity GaInAs PIN photodiode with AlGaInAs window”, Inst. Phys. Conf. Ser., No. 112, pp. 603-606, 1990.
[29] CTSD, Rockwell International, & AT&T Bell Lab. O. K. Kim, B. V. Dutt, R. J. McCoy, and J. R. Zuber, “A low dark-current, planar InGaAs p-i-n photodiode with a quaternary InGaAsP cap layer”, IEEE J. Quantum Electron., vol. 21, pp. 138-143, 1985.
[30] RCA G. H. Olsen, “Low leakage, high-efficiency, reliable VPE InGaAs 1.0-1.7μm photodiodes”, IEEE Electron Device Lett., vol. 2, pp. 217-219, 1981.
[31] Matsushita K. Ohnaka, M. Kubo, and J. Shibata, “A low dark current InGaAs/InP p-i-n photodiode with covered mesa structure”, IEEE Trans. Electron Devices, vol. 34, pp. 199-204, 1987.
[32] Mitsubishi K. Takahashi, T. Murotani, M. Ishii, W. Susaki, and S. Takamiya, “A monolithic 1×10 array of InGaAsP/InP photodiodes with small dark current and uniform responsivities”, IEEE J. Quantum Electron., vol. 17, pp. 239-242, 1981.
[33] Conductus & UCSB Y. M. Zhang, V. Borzenets, N. Dubash, T. Reynolds, Y. G. Wey, and J. E. Bowers, “Cryogenic performance of a high-speed GaInAs/InP p-i-n photodiode”, J. Lightwave Technol., vol. 15, pp. 529-533, 1997.
[34] Y. Takanashi, M. Kawashima, and Y. Horikoshi, “Required donor concentration of epitaxial layers for efficient InGaAsP avalanche photodiodes,” Jpn. J. Appl. Phys., 19, pp.693-701, 1980.
[35] S.M Sze, ”Physics of semiconductor devices: physics and technology,” Wiley, 1985.
[36] S.R.Forrest, R.F.Leheny, R.E.Nahory, and M.A.Pollack, ”In0.53Ga0.47As photodiodes with dark current limited by generation-recombination and tunneling,” Appl.Phys.Lett,vol.37,322,1980.
[37] C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1-xAs heterojunctions,” J. Appl. Phys., vol.49, pp. 3530-3542, 1978.
[38] M. Fukuda, “Current drift associated with surface recombination current in InGaAsP/InP optical devices,” J. Appl. Phys., vol. 59, pp. 4172-4176, 1986.
[39] HENRY, C.H., LOGAN, R.A., and MERRITT, F.R., “Measurement of gain and absorption spectra in A1GaAs buried heterostructure lasers” , J Appl. Phys., 1980,51,pp. 3042-3050
[40] DERJ, R.J., KAPON. E., and SCHIAVONE, L.M.: “Scattering in low-loss GaAs/A1GaAs rib waveguides”, Apple. Phys Lett., 1987.51,pp. 789-791
[41] CASEY Jr., H.C., and PANISH, M.B., “Heterostructure lasers, Pt. A.“ (Academic Press, 1978,p. 52)
[42] ALPING, A., TELL, R., and ENG, S.T., ”Photodetection properties of semiconductor laser diode detectors”, J. Lightwave Technol., 1986, LT-4, pp. 1662-1668.
[43] SARUWATARI, M., and NAWATA, K., “ Semiconductor laser to single-mode fibre coupler”, Appl. Opt., 1979, 18, pp. 1847-1856.
[44] KAWANO, L., SARUWATARI, M., and MITOMI, O., ”A new confocal combination lens method for a laser-diode module using a single-mode fiber”, J. Lightwave T echnol., 1985, LT-3, pp. 739-745
[45] GHAFOORI-SHIRAZ, H., and ASANO, T., “Microlens for coupling a semiconductor laser to a single-mode fibre“, Optics Lett., 1986, 11, pp. 537-539.
[46] LARSSON, A., ANDRELSON, P.A., ENG, S.T., and YARIV, A., “Tunable superlattice pin photodetectors: characteristics, theory, and applications” ,IEEE J . Quantum Electron., 1988, 24, pp. 787-801.
[47] LUCOVSKY, G., SCHWARZ, R.F., and EMMONS, R.B., “Transit-time considerations in pin diodes”, J. Appl. Phys., 1964,35, pp.622-628.
[48] WANG, S.Y., and BLOOM, D.M., “100 GHz bandwidth planar GaAs Schottky photodiode”, ibid., 1983, 19, pp.554-555.
[49] SZE, S.M., “Pyhsics of semiconductor devices “, Wiley, 1981
[50] LUCOVSKY, G., SCHWARZ, R.F., and EMMONS, R.B., “Transit-time considerations in pin diodes”, J. Appl. Phys., 1964,35, pp.622-628.
[51] WINDHORN, T.H., COOK, L.W., and STILLMAN, G.E., “The electron velocity-field characteristics for n-In0.53Ga 0.47 As at 300 K”, Electron Device Lett., 1982, EDL-3, pp. 18-20.
[52] WINDHORN, T.H., COOK, L.W., and STILLMAN, G.E., “High-field electron transport in InX Ga 1-X As y P 1-y ( g=1.2 m)”, Appl. Phys. Lett., 1982,41,pp. 1065-1067.
[53] BOWERS, J.E., and BURRUS, C.A., “Ultrawide-band long-wavelength pin photodetectors”, J. Lighwave Technol., 1987, LT-5, pp. 1339-1350.
[54] FORREST, S.R., KIM, O.K., and SMITH, R.G., ”Optical reponse time of In0.53Ga 0.47 As/InP avalanche photodiodes”, Appl. Phys. Lett., 1982, 41,pp. 95-98.
[55] HOLDEN, W.S., CAMPBELL, J.C., FERGUSON, J.F., DENTAI, A.G., and JHEE, Y.K., “Improved frequency response of InP/InGaAsP/InGaAs avalanche photodiodes with separate absorption, grading, and multiplication region”, Electron. Lett., 1985, 21, pp.886-887.
[56] T. Takeuchi, K. Makita, and K. Taguchi, “A planar slab-waveguide photodiode with a pseudowindow region in front of the waveguide,” IEEE Photon. Technol. Lett., vol. 10, pp. 255-257, 1998.
[57] C. L. Ho, M. C. Wu, W. J. Ho, J. W. Liaw, and H. H. Wang, “Effectiveness of the pseudowindow for edge-coupled InP-InGaAs-InP PIN photodiodes,” IEEE J. Quantum Electron., vol. 36, no. 3, pp. 333-339, 2000.
[58] C. L. Ho, W. J. Ho, and M. C. Wu, “Edge-coupled InGaAs P-I-N photodiode with the pseudowindow defined by etching process,” IEEE J. Quantum Electron., vol. 37, no. 11, pp. 1409-1411, 2001.
[59] T. Bottner, H. Krautle, E. Kuphal, K. Miethe and H. L. Hartnagel, “Surface- and sidewall-damage of InP-based optoelectronic devices during reactive etching using CH4/H2” pp. 115-118
[60] C. L. Ho, C. J. Lin, W. J. Ho, and J. W. Liaw, ”Self-aligned fabrication method for ridge-waveguide semiconductor laser” U. S. Patent, US 6,503,770 B1, 2003.
[61] C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1-xAs heterojunctions,” J. Appl. Phys., vol.49, pp. 3530-3542, 1978.
[62] M. Fukuda, “Current drift associated with surface recombination current in InGaAsP/InP optical devices,” J. Appl. Phys., vol. 59, pp. 4172-4176, 1986.
[63] G. Lucovsky, R. F. Schwarz, and R. B. Emmios, “Transit-time considerations in p-i-n diode,” J. Appl. Phys., vol. 35, pp. 622-628, 1964.
[64] P. Hill, J. Schlafer, W. Powazinik, M. Urban, E. Eichen, and R. Olshansky, “Measurement of hole velocity in n-type InGaAs,” Appl. Phys. Lett., vol. 50, pp. 1260-1262, 1987.
[65] T. H. Windhorn, L. W. Cook, and G. E. Stillman, “The electron velocity-field characteristic for n-In0.53Ga0.47As at 300K,” IEEE Electron Device Lett., vol. 3, pp. 18-20, 1982.
[66] J. Harari, D. Decoster, J. P. Vilcot, B. Kramer, C. Oguey, P. Salzac, and G. Ripoche, “Numerical simulation of avalanche photodiodes with guard ring,” IEE Proc. vol. 138, pt. J, no. 3, pp. 211-217, 1991.
[67] J. Harari, G. H. Jin, F. Journet, J. Vandecasteele, J. P. Vilcot, C. Dalle, M. R. Friscourt, and D. Decoster, “Modeling of microwave top illuminated PIN photedetector under very high optical power,” IEEE Trans. Microwave Theory and Tech., vol. 44, pp. 1484-1487, 1996.
[68] A. Alping, “Waveguide pin photodetectors: Theoretical analysis and design criteria,” IEE Proc. vol. 136, pt. J, pp. 177-182, 1989.
[69] M. Born and E. Wolf, “Principles of Optics,” 3rd ed Oxford : Pergamon,1965
[70] P. Yeh, Optical Waves in Layered Media. New York: Wiley, 1988.
[71] T. Mukaihara, N. Yamanaka, N. Iwai, T. Ishikawa and A. Kasukawa, ”1.3μm GaInAsP lasers integrated with butt-coupled waveguide and high reflective semiconductor/air Bragg reflector (SABAR)” Electron. Lett., vol. 34, pp.882-884, 1998
[72] S. S. Murtaza, K. A. Anselm, A. Srinvasan, B. G. Streetman, and J. C. Campbell, ”High-Reflectivity Bragg Mirror for Optoelectronic Applications,” IEEE J. Quantum Electron., 1995, 31, pp1819-1825
[73] ]F. Hieronymi, E. H. Bottcher, E. Droge, D. Kuhl, St. Kollakowski and D. Bimberg, ”Large-area low-capacitance InP/InGaAs MSM photodetectors for high-speed operation under front and rear illumination,” Electron. Lett., vol.30, pp.1247-1248, 1994