簡易檢索 / 詳目顯示

研究生: 麥顥覺
論文名稱: 熱晶格波茲曼法在不可壓縮極限之黏性熱消散模型
A thermal lattice Boltzmann model for flows with viscous heat dissipation in the incompressible limit
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 49
中文關鍵詞: 晶格波茲曼法黏性熱消散
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The thermal lattice Boltzmann model for flows with viscous heat dissipation is proposed. In this model, the thermal equilibrium distribution function is similar to the density equilibrium distribution function in the thermal lattice BGK model, except that the leading quantities are density and scalar, respectively. The heat viscous heating dissipation term in this model can be expressed in macroscopic form which includes the strain rate tensor. The viscous heating dissipation term in this model is convenient to implement. The proposed thermal lattice Boltzmann model is applied to two-dimensional thermal Poiseuille flow, thermal Couette flow, thermal Couette flow with wall injection, natural convection in a square cavity, and three-dimensional thermal Poiseuille flow in a square duct. Numerical simulations indicate that each formulation is second order accurate.


    1 Introduction 1 1.1 Lattice Boltzmann method . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Thermal lattice Boltzmann models . . . . . . . . . . . . . . . 2 1.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Thermal boundary conditions . . . . . . . . . . . . . . . . . . 4 1.3 Objective and motivation . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Governing equations 7 2.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 The BGK and the low-Mach-number approximation . . . . . . . . . . 9 2.2.1 The BGK approximation . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 The low-Mach-number approximation . . . . . . . . . . . . . . 11 2.3 Discretization of the BGK equation . . . . . . . . . . . . . . . . . . . 12 2.3.1 Discretization of phase space . . . . . . . . . . . . . . . . . . . 12 2.3.2 Discretization of time . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.3 Discretization of the external force term . . . . . . . . . . . . 15 2.4 The thermal lattice BGK equation with a viscous heat dissipation term 16 2.5 The Chapman-Enskog expansion . . . . . . . . . . . . . . . . . . . . 17 3 Numerical algorithm 19 3.1 Simulation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Velocity boundary conditions . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Thermal boundary conditions . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 Dirichlet thermal boundary conditions . . . . . . . . . . . . . 22 3.3.2 Neumann thermal boundary conditions . . . . . . . . . . . . . 24 3.3.3 Corner thermal boundary conditions . . . . . . . . . . . . . . 24 4 Numerical results 27 4.1 2-D thermal Poiseuille flow . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 2-D thermal Couette flow . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 2-D thermal Couette flow with wall injection . . . . . . . . . . . . . . 31 4.4 3-D thermal Poiseuille flow in a square duct . . . . . . . . . . . . . . 33 4.5 2-D natural convection in a square cavity . . . . . . . . . . . . . . . . 35 5 Conclusions 33

    [1] S. Chen, H. Chen, D. O. Martinez, and W. H. Matthaeus, “Lattice Boltzmann model for simulation of magnetohydrodynamics”, Physics Review Letters 67, 3776,(1991).
    [2] Y. H. Qian, D. d’Humi`res, and P. Lallemand, “Lattice BGK model for Navier-Stokes equation”, Europhysics Letters 17, 479, (1992).
    [3] S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flow”, Annual Reviews of Fluid Mechanics 30 329, (1998).
    [4] U. Frisch, B. Hasslacher, and Y. Pomeau, “Lattice-gas automata for the Navier-Stokes equation”, Physics Review Letters 56, 1505, (1986).
    [5] S. Wolfram, “Cellular automaton fluids 1: Basic theory”, Journal Statistic Physics 45, 471, (1986).
    [6] F. J. Higuera, S. Sussi, and R. Benzi, “3-dimensional flows in complex geometries with the lattice Boltzmann method”, Europhysics Letters 9, 345,(1989).
    [7] F. J. Higuera, and J. Jem´nez, “Boltzmann approach to lattice gase simulations”, Europhysics Letters 9, 663, (1989).
    [8] P. L. Bhatnagar, E. P. Gross, and M. Grook, “A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems”, Physics Reviews E 94, 511, (1954).
    [9] S. Harris, “An introduction to the throry of the Boltzmann equation”, Holt,Rinehart and Winston, New York, (1971).
    [10] Y. H. Qian, D. d’Humi´res, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation”, Europhysics Letters 17, 479, (1992).
    [11] H. Chen, S. Chen, and W. H. Matthaeus,“Recovery of the Navier-Stokes quations using a lattice gas Boltzmann method”, Physics Reviews A 45, R5339,
    (1992).
    [12] U. Frisch, D. d’Humi`res, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.P. Rivet, “Lattice gas hydrodynamics in two and three dimensions”, Complex System 1, 649, (1987).
    [13] D. O. Martinez, W. H. Matthaeus, S. Chen, and D. C. Montgomery,“Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics”, Physics Fluids 6, 1285, (1994).
    [14] G. McNamara, A. L. Garcia, and B. J. Alder, ”Stabilization of thermal lattice Boltzmann models”, Journal Statistic Physics 81, 395, (1995).
    [15] X. He, S. Chen, and G. D. Doolen, “A novel thermal model for the lattice Boltzmann method in incompressible limit”, Journal Computational Physics 146, 282, (1998).
    [16] Y. Peng, C. Shu, and Y. T. Chew, “Simplified thermal lattice Boltzmann model for incompressible thermal flows”, Physics Reviews E 68, 026701, (2003).
    [17] Q. Li,Y. L. He, Y. Wang and G. H. Tang, “An improved thermal lattice Boltzmann model for flows without viscous heat dissipation and compression work”, International Journal of Modern Physics C Vol. 19, No. 1 (2008) 125-150.
    [18] Yong Shi, T. S. Zhao, and Z. L. Guo, “Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit”, Physics Reviews E70, 066310, (2004).
    [19] Zhi-Wei Tian, Chun Zuo, H.J. Liu, Z. H. Liu, Z.L. Guo and C.G. Zheng,
    “Thermal lattice Boltzmann model with viscous heat dissipation in the incompressible limit”, International Journal of Modern Physics C Vol. 17, No.8 (2006) 1131-1139.
    [20] X. He, Q. Zou, L.S. Luo, and M. Dembo, “Analytic solution of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model”, Journal Statistic Physics 87, 115, (1997).
    [21] P. A. Skordos, “Initial and boundary conditions for the lattice Boltzmann method”, Physics Reviews E 48, 4823, (1993).
    [22] D. R. Noble, S. Chen, J. G. Georgiadis, and R. O. Buckius, “A consistent hydrodynamic boundary condition for the lattice Boltzmann method”, Physics Fluids 7, 203, (1995).
    [23] T. Inamuro, M. Yoshino, and F. Ogino, “A non-slip boundary condition for lattice Boltzmann simulation”, Physics Fluids 7, 2928, (1995).
    [24] S. Chen, D. O. Martinez, and R. Mei, “On boundary conditions in lattice Boltzmann methods”, Physics Fluids 8, 2527, (1996).
    [25] Q. Zou and X. He, “On pressure and velocity boundary conditions for the lattice Boltzmann BGK model”, Physics Fluids 9, 1591, (1997).
    [26] C. F. Ho, C. Chang, K. H. Lin and C. A. Lin, “Consistent boundary conditions for 2D and 3D lattice Boltzmann simulations”, CMES, vol.1208,no.1, pp.1-19,(2009).
    [27] A. D’Orazio, S. Succi, and C. Arrighettic, “Lattice Boltzmann simulation of open flows with heat transfer”, Physics Fluids 15, 2778, (2003).
    [28] G. H. Tang, W. Q. Tao, and Y. L. He, “Thermal boundary condition for the thermal lattice Boltzmann equation”, Physics Reviews E 72, 016703, (2005).
    [29] C. H. Liu, K.H. Lin, H. C. Mai and C. A. Lin, “Thermal boundary conditions for thermal lattice Boltzmann simulations”, Compters and Mathematics with applications(2009) (accepted).
    [30] Tamas I. Gombosi, “Gas kinetic theorym”, Cambridge University Press,(1994).
    [31] X. He and L. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Physics Reviews E 56, 6811, (1997).
    [32] Deng Bin, Shi Bao-Chang, Wang Guang-Chao, “A new lattice Bhatnagar-Gross-Krook model for the convection-diffusion equation with a source term”,Chin. Phys. Lett. Vol. 22, NO.2 267 (2005).
    [33] S. Hou, J. Sterling, S. Chen and G.D. Doolen,“A lattice Boltzmann subgrid model for high Reynolds number flows”, Pattern formation and lattice gas automata. In: Lawniczak AT, Kapral R, editors Pattern formation and lattice gas automata. Fields Inst Commu, vol. 6, 1996. p. 151-66.
    [34] Y. Peng, C. Shu, and Y. Chew, “A 3D incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity”, Journal Computational Physics 193, 260, (2003).
    [35] Z. Guo, C. Zheng, and B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method”, Physics Reviews E 65, 046308, (2002).
    [36] F. M. White, “Viscous fluid flow (third edition)”, McGraw-Hill, New York,(2006).
    [37] G. De Vahl Davis, “Natural convection of air in a square cavity: a bench mark numerical solution”, International Journal Numerical Methods Fluids 3, 249,(1983).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE