簡易檢索 / 詳目顯示

研究生: 施政邦
Shih, Cheng-Pang
論文名稱: Casas-Alvero猜想
On the Casas-Alvero Conjecture
指導教授: 卓士堯
Jow, Shin-Yao
口試委員: 陳俊成
Chen, Jiun-Cheng
陳正傑
Chen, Jheng-Jie
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 35
中文關鍵詞: 單變數多項式Casas-Alvero猜想代數幾何
外文關鍵詞: Univariate Polynomials, Casas-Alvero Conjecture, Algebraic Geometry
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Casas-Alvero 猜想描述的內容為:在一個特徵零的體上的一元多項式環
    中,只有一個線性多項式的完全次方才能同時跟他的每階微分都有公根。
    我們在本文中蒐集了許多關於證明此猜想過程中的結果,同時加入我們自
    己的觀點,並提供了在我們這樣的觀點下能得到的部分結果。


    The Casas-Alvero conjecture states that the only polynomial over a field
    of characteristic zero in one variable that has a common root with each of
    its derivative is a power of a linear polynomial. We collect various results
    towards proving this conjecture, and add our point of view as well as partial
    results from such a view.

    1 Introduction 4 2 Conventions, Definitions, and the Conjecture 5 2.1 Background Material . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Known Results . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Graf von Bothmer, Labs, Schicho, van de Woestijne’s Paper 7 3.1 Two preliminary lemmas involving binomial coefficients . . . . 7 3.2 Using aforementioned lemmas to prove the conjecture under certain conditions in characteristic p . . . . . . . . . . . . . . 17 3.3 Extension to characteristic 0 from p . . . . . . . . . . . . . . . 22 4 Draisma, de Jong’s Paper 24 4.1 p-adic valuation . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 The Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Castryck, Laterveer, Ouna¨ıes’s Paper 28 6 Our Attempt 31 6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.2 Partial Results . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7 Conclusion 34 References 35 3

    [Har77] R. Hartshorne. “Algebraic Geometry”. In: Graduate Texts in
    Mathematics. Springer, 1977. Chap. II. isbn: 9780387902449. doi:
    https://doi.org/10.1007/978-1-4757-3849-0.
    [Cas01] Eduardo Casas-Alvero. “Higher order polar germs”. In: J. Algebra.
    240.1 (2001), pp. 326–337. doi: http://dx.doi.org/10.
    1006/jabr.2000.8727.
    [DG05] Gema M. Diaz-Toca and Laureano Gonz´alez-Vega. “On a Conjecture
    About Univariate Polynomials and Their Roots”. In: Algorithmic
    Algebra and Logic. Proceedings of the A3L 2005, April
    3-6, Passau, Germany; Conference in Honor of the 60th Birthday
    of Volker Weispfenning. Ed. by Andreas Dolzmann, Andreas
    Seidl, and Thomas Sturm. Books on Demand, 2005, pp. 83–90.
    [Lan05] S. Lang. “Algebra”. In: Graduate Texts in Mathematics. Springer
    New York, NY, 2005. Chap. XII. isbn: 9780387953854. doi: https:
    //doi.org/10.1007/978-1-4613-0041-0.
    [Gra+07] Hans-Christian Graf von Bothmer et al. “The Casas-Alvero conjecture
    for infinitely many degrees”. In: J. Algebra. 316.1 (2007),
    pp. 224–230. doi: http://dx.doi.org/10.1016/j.jalgebra.
    2007.06.017.
    [DJ11] Jan Draisma and Johan P. de Jong. “On the Casas-Alvero conjecture”.
    In: Eur. Math. Soc. Newsl 80 (2011), pp. 29–33.
    [CLO12] Wouter Castryck, Robert Laterveer, and Myriam Ouna¨ıes. Constraints
    on counterexamples to the Casas-Alvero conjecture, and a
    verification in degree 12. 2012. doi: 10.48550/ARXIV.1208.5404.
    url: https://arxiv.org/abs/1208.5404.

    QR CODE