簡易檢索 / 詳目顯示

研究生: 高于晟
Kao, Yu-Cheng
論文名稱: 奈米尺度之摻鋯二氧化鉿之鐵電性質與體積關係的研究: 表面能及相關實驗
The origin of size-dependent ferroelectricity in nanoscale hafnia-zirconia: Surface energy, and Experiments
指導教授: 林志明
Lin, Chih-Ming
唐英瓚
Tang, Ying-Tzan
口試委員: 莊振益
Jhuang, Jhen-Yi
李信義
Lee, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 61
中文關鍵詞: 摻鋯二氧化鉿負電容鐵電晶粒大小體積效應表面能
外文關鍵詞: HZO, Negative-Capacitance, Ferroelectricity, Grain size, Size effect, surface energy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究利用原子層沉積系統成長的摻鋯二氧化鉿薄膜之晶粒及結晶相位與成長條件的關係。粒徑量測方面,我們利用電子顯微鏡拍攝晶粒影像並使用軟體分析粒徑大小與其數量之分佈。相位量測方面我們利用X光繞射儀得出樣品的2θ圖譜並根據文獻方法擬合求出不同相位在樣品中的相對含量。除了實驗結果外,我們亦利用第一原理計算表面能並搭配熱力學定律得知不同相位間的自由能大小關係,藉此預測相位在不同條件下之相對含量。本文最末探討退火溫度與相位含量之關係在實驗結果與理論預測之差異性原因。


    In this study, we investigate grain and crystalline phase of ALD fabricated Zr doped HfO2 under different process conditions. For analysis of grain, we use electron microscope to take image and then use software to obtain grain size distribution. For analysis of phase, we use X-ray diffractometer to obtain 2θ diffraction spectrum of sample and use literature method to obtain phase ratio. Besides experiment, we also use first principle calculation to calculate surface energy, which then be used to predict phase ratio of each sample by the application of thermodynamics. At the end of this study, we discuss relationship between annealing temperature & phase ratio and point out a possible reason that cause the difference between experiment & calculation.

    摘要------------------------------------------------------------- I Abstract--------------------------------------------------------II 內容目錄--------------------------------------------------------III 圖目錄------------------------------------------------------------V 表目錄------------------------------------------------------------X 第一章 緒論-------------------------------------------------------1 1.1 前言----------------------------------------------------------1 1.2 鐵電材料的負電容特性-------------------------------------------4 1.3 研究動機------------------------------------------------------7 第二章 理論基礎----------------------------------------------------8 2.1 摻鋯二氧化鉿的性質---------------------------------------------8 2.2 熱力學自由能模型----------------------------------------------10 第三章 實驗方法與設備---------------------------------------------14 3.1 實驗方法與流程------------------------------------------------14 3.2 物理氣相沉積系統(Physical Vapor Deposition system, PVD)-------16 3.3 原子層沉積系統(Atomic Layer Deposition system, ALD)-----------17 3.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)-----------18 3.5 X光繞射儀(X-Ray diffraction, XRD)----------------------------19 3.6 X光光電子能譜儀(X-Ray photoemission spectroscopy, XPS)--------20 3.7 原子力顯微鏡(Atomic force microscope, AFM)-------------------21 3.8 快速升溫退火爐(Rapid thermal annealing, RTA)------------------22 3.9 第一原理計算(First Principle Calculation)--------------------23 第四章 結果與討論-------------------------------------------------24 4.1 摻鋯二氧化鉿之元素組成比例-------------------------------------25 4.2 摻鋯二氧化鉿之薄膜晶粒大小分佈---------------------------------26 4.2.1 膜厚的影響-----------------------------------------------30 4.2.2 基板的影響-----------------------------------------------34 4.2.3 退火溫度的影響--------------------------------------------38 4.3 摻鋯二氧化鉿之m, o, t三種相位的組成比例------------------------41 4.3.1 膜厚的影響-----------------------------------------------44 4.3.2 基板的影響-----------------------------------------------47 4.3.3 退火溫度的影響--------------------------------------------53 第五章 結論------------------------------------------------------58 第六章 未來展望---------------------------------------------------59 參考文獻---------------------------------------------------------60

    [0] C. S. Hwang, Atomic Layer Deposition for Semiconductors (Springer US, New York, 2014).
    [1] Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405_410 (2008).
    [2] Zhirnov, V. V. & Cavin, R. K. Negative capacitance to the rescue. Nature Nanotech. 3, 7778 (2008).
    [3] Theis, T. N. & Solomon, P. M. It's time to reinvent the transistor. Science 327, 1600-1601 (2010).
    [4] Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329-337 (2011).
    [5] 蔡孟辰、陳敏彰/高介電常數材料金氧半元件之發展/奈米通訊22卷NO.1
    [6] Chandra P., Littlewood P.B. (2007) A Landau Primer for Ferroelectrics. In: Physics of Ferroelectrics. Topics in Applied Physics, vol 105. Springer, Berlin, Heidelberg
    [7] Landau, L. D. & Khalatnikov, I. M. On the anomalous absorption of sound near a second order phase transition point. Dokl. Akad. Nauk 96,469-472 (1954).
    [8] Asif Islam Khan, Korok Chatterjee, Brian Wang, Steven Drapcho, Long You, Claudy Serrao, Saidur Rahman Bakaul, Ramamoorthy Ramesh, Sayeef Salahuddin. Negative capacitance in a ferroelectric capacitor. Nature Materials, 2015, Volume 14, Number 2, Page 182
    [9] R. Materlik, C. Künneth and A. Kersch, J. Appl. Phys., 2015, 117, 134109.
    [10] M.H. Park et. al, Nanoscale, 2017, 9, 9973
    [11] Carter, Ashley H Classical and statistical thermodynamics. Prentice Hall, Upper Saddle River, N.J, 2001.
    [12] T. D. Huan, V. Sharma, G. A. Rossetti, and R. Ramprasad, “Pathways towards ferroelectricity in hafnia,” Phys. Rev. B 90(6), 064111 (2014).
    [13] E. D. Grimley, T. Schenk, X. Sang, M. Pešić, U. Schroeder, T. Mikolajick and J. M. LeBeau, Adv. Electron. Mater., 2016, 2, 1600173.
    [14] Kim et al., Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer, Appl. Phys. Lett. 105, 192903 (2014)
    [15] Park et al., Appl. Phys. Lett. 102, 242905 (2013)
    [16] Park et al., Nanoscale, 2018,10, 716-725
    [17] Park et al., J. Mater. Chem. C, 2017, 5, 4677
    [18] J.Müller et al.,Nano Lett. 12,4314(2012)
    [19] Park et al., Appl. Phys. Lett. 102, 112914 (2013)
    [20] Park et al., Appl. Phys. Lett. 104, 072901 (2014)
    [21] Park et al., Appl. Phys. Lett. 105, 192903 (2014)

    QR CODE