簡易檢索 / 詳目顯示

研究生: 何俊德
Ho, Chun-Te
論文名稱: 以溶液方式合成之銅摻雜四氧化三鈷作為光伏元件之吸收層
Solution-processed Cu-doped Co3O4 as an Absorption Layer for Photovoltaics
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員: 李紫原
林俊榮
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 155
中文關鍵詞: 銅摻雜四氧化三鈷奈米結構
外文關鍵詞: Cu-doped Co3O4, nanostructure
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶液製程,成長穩定性好、對環境無害、且可大面積製作之新穎Cu-doped Co3O4奈米棒、奈米顆粒與奈米粒薄膜,並以此氧化物材料試製成新穎氧化物異質介面太陽能電池,驗證Cu-doped Co3O4運用於太陽能電池吸收層之可行性。
    本研究亦針對不同摻雜濃度之Cu-doped Co3O4奈米棒於X光繞射、穿透式電子顯微鏡、以及拉曼光譜儀分析,確認已成功合成Cu-doped Co3O4奈米棒,且為多晶結構,藉由X-ray 光電子能譜儀分析化學成分確認銅摻雜進入Co3O4,以及利用感應耦合電漿質譜儀做銅定量分析;在光學性質方面,利用紫外/可見光吸收光譜、陰極激發放光系統分析可知隨著調變銅的摻雜量,增加吸收率與其吸收係數。且由不同的銅摻雜量,可在1.3 - 1.4 eV以及2.55 - 3.5 eV之間調變其能隙。驗證出Cu-doped Co3O4奈米棒為一相當具有潛力的光吸收媒介。此外,藉由調整不同參數成長Cu-doped Co3O4奈米粒薄膜,並以霍爾效應量測系統分析電性。得到最佳之載子濃度為1015 - 1016 cm-3,載子遷移率為1 - 10 cm2 / (V•s)。
    本研究也製備出p-Cu-doped Co3O4奈米粒薄膜 / n-ZnSe薄膜異質接面太陽能電池,其太陽能電池電性表現為Voc = 0.14 V、Jsc = 0.65 mA/cm2、FF = 27 %、η = 0.028 %,其中短路電流密度較噴塗n-TiO2,及熱壓方式製作之電流上升數百倍。由上述結果可知Cu-doped Co3O4為一新穎之氧化物吸收層材料,且具有應用於太陽能電池之潛力。


    摘要 I Abstract III 誌謝 V 目錄 XI 圖目錄 XVI 表目錄 XXV 第一章 緒論 1 第二章 文獻回顧及原理簡介 5 2.1 太陽能電池簡介 5 2.1.1 太陽能電池工作原理 8 2.1.2太陽能電池電學性質 12 2.2以氧化物基底材料作為吸收層之固態太陽能電池 16 2.3 四氧化三鈷基底材料之製備與應用 20 第三章 實驗流程與儀器簡介 22 3.1實驗步驟 24 3.1.1 p型銅摻雜四氧化三鈷(Cu-doped Co3O4)奈米結構及奈米粒薄膜製備 24 3.1.2 Cu-doped Co3O4異質接面太陽能電池之製備 27 3.2. 實驗儀器簡介 33 3.2.1場發射掃描電子顯微鏡、能量散佈分析儀 33 3.2.2高解析度穿透式電子顯微鏡 35 3.2.3 X光繞射分析儀 37 3.2.4拉曼光譜儀 38 3.2.5薄膜厚度輪廓量測儀 40 3.2.6霍爾效應量測系統 41 3.2.7紫外/可見光吸收光譜儀 43 3.2.8陰極激發放光儀 45 3.2.9熱重分析儀 47 3.2.10 X-ray光電子能譜儀 49 3.2.11熱壓成型系統 51 3.2.12聚焦離子顯微束系統 52 3.2.13感應耦合電漿質譜分析儀 54 3.2.14太陽能電池效率量測系統 56 第四章 實驗結果與討論 58 4.1水熱法合成Cu-doped Co3O4 奈米結構 60 4.1.1鈷前驅物濃度Co(NO3)2•6H2O對Cu-doped Co3O4奈米結構形貌之影響 60 4.1.2氨水濃度對Cu-doped Co3O4奈米結構形貌之影響 64 4.1.3反應溫度對Cu-doped Co3O4奈米結構形貌之影響 68 4.1.4 醋酸銅水合物濃度與硝酸鈷六水合物莫耳濃度比對於Cu-doped Co3O4奈米結構形貌之影響 72 4.2 Cu-doped Co3O4奈米棒分析 76 4.2.1 Cu-doped Co3O4奈米棒TG-DTA 熱重分析 76 4.2.2 Cu-doped Co3O4奈米棒X光繞射分析 78 4.2.3 Cu-doped Co3O4奈米棒微結構與成分分析 81 4.2.4 Cu-doped Co3O4奈米棒微量元素分析 86 4.2.5 Cu-doped Co3O4奈米棒拉曼光譜儀分析 88 4.2.6 Cu-doped Co3O4奈米棒X-ray光電子能譜儀成分分析 92 4.2.7 Cu-doped Co3O4奈米棒光學性質分析 96 4.2.7.1 Cu-doped Co3O4奈米棒紫外/可見光吸收光譜及其能隙分析 96 4.2.7.2 Cu-doped Co3O4奈米棒陰極激發放光儀能譜分析 101 4.3水熱法成長Cu-doped Co3O4 奈米粒薄膜 105 4.3.1反應溫度對Cu-doped Co3O4奈米粒薄膜表面形貌 106 4.3.2反應溫度對Cu-doped Co3O4奈米粒薄膜X-ray繞射分析 109 4.3.3 Cu-doped Co3O4奈米粒薄膜霍爾效應量測分析 111 4.3.3.1不同反應溫度對Cu-doped Co3O4奈米粒薄膜電性影響 112 4.3.3.2不同氨水濃度對Cu-doped Co3O4奈米粒薄膜電性影響 114 4.3.3.3不同醋酸銅水合物與硝酸鈷六水合物莫耳濃度比值對 Cu-doped Co3O4奈米粒薄膜電性影響 116 4.4以p-Cu-doped Co3O4奈米結構與奈米粒薄膜製作異質接面太陽能電池元件分析 119 4.4.1以n-TiO2作為n-type半導體層組合之太陽能電池 120 4.4.1.1以噴塗n-TiO2奈米顆粒於自組裝p-Cu-doped Co3O4奈米棒方式製作之太陽能電池 120 4.4.1.2以噴塗n-TiO2奈米顆粒與p-Cu-doped Co3O4奈米顆粒方式製作之異質接面太陽能電池 123 4.4.2以n-ZnSe作為n-type半導體層製作之太陽能電池 127 4.4.2.1 n-ZnSe薄膜厚度對於n-ZnSe/p-Cu-doped Co3O4奈米粒薄膜異質接面太陽能電池之效率影響 128 4.4.2.2退火處理對於n-ZnSe / p-Cu-doped Co3O4奈米粒薄膜之異質接面太陽能電池之效率影響 133 第五章 結論 137 第六章 未來展望 140 參考文獻 142 本研究產出之論文發表 155

    [1] BP Statistical Review of World Energy June 2011, 2011, 1-38.
    [2] 楊昌中,能源領域中的奈米科技研究,工業研究院能源與環境研究所,2006.
    [3] John Perlin, “Powering the Planet.”, Nature, 2000, 403, 363-364.
    [4] Energy Information Administration, “2016 Levelized Cost of New Generation Resources from the Annual Energy Outlook 2010.”, International Energy Outlook 2010 – Highlights, 2010. Energy Information Administration, International Energy Outlook 2011.
    [5] D. M. Chapin, C.S. Fuller, and G.L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power.”, J. Appl. Phys., 1954, 25, 676-677.
    [6] M. A. Green, “Third Generation Photovoltaics: Ultra-high Conversion Efficiency at Low Cost.”, Prog. Photovolt: Res. Appl., 2001, 9, 123-135.
    [7] G. F. Brown and J. Wu, “Third Generation Photovoltaics.”, Laser & Photon. Rev., 2009, 3, 294-405.
    [8] N. S. Lewis, “Toward Cost-Effective Solar Energy Use.”, Science, 2007, 315, 798-801.
    [9] G. W. Crabtree and N. S. Lewis, “Solar Energy Conversion.”, Physics Today, 2007, 37-42.
    [10] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, “Novel 19.8% Efficient ”Honeycomb” Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells.”, Applied Physics Letters, 1998, 73, 1991–1993.
    [11] O. Schultz, S. W. Glunz, and G. P. Willeke, “Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency.”, Prog. Photovolt: Res. Appl., 2004, 12,553–558.
    [12] J. H. Petermann, D. Zielke, J. Schmidt, F. Rojas EG, and R. Brendel, “19 %-efficient and 43 m-thick crystalline Si solar cell from layer transfer using porous silicon.”, Progress In Photovoltaics 2012, 20, 1-5.
    [13] M. J. Keevers, T. L. Young, U. Schubert, and M. A. Green, “10% efficient CSG Minimodules.”, 22nd European Photovoltaic Solar Energy Conference, Milan, September 2007.
    [14] http://www.greentechmedia.com/articles/read/stealthyalta-devices-
    next-gen-pv-challenging-the-status-quo/
    [15] R. Venkatasubramanian, B. C. O ‟Quinn, J. S. Hills, P. R. Sharps, M. J. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel, and B. Keyes, “18.2% (AM1.5) Efficient GaAs Solar Cell on Optical-grade Polycrystalline Ge Substrate.”, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, 31–36.
    [16] C. J. Keavney, V. E. Haven, and S. M. Vernon, “Emitter Structures in MOCVD InP Solar Cells.”, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, 141–144.
    [17] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9 %-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2 % fill factor.”, Progress in Photovoltaics, 2008, 16, 235-239.
    [18] http://www.q-cells.com
    [19] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert , S. Asher,D. H. Levi, and P. Sheldon, “16.5%-efficient CdS/CdTe Polycrystalline Thin-film Solar Cell.”, Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October 2001, 995–1000.
    [20] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hötzel, J. Spitznagel, J. Steinhauser, L. Castens, and Y. Djeridane, “High-efficiency amorphous silicon devices on LPCVD-ZNO TCO prepared in industrial KAI-M R&D reactor.”, 24th European Photovoltaic Solar Energy Conference, Hamburg, September 2009.
    [21] K. Yamamoto, M. Toshimi, T. Suzuki, Y. Tawada, T. Okamoto, and A. Nakajima, “Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature.”, MRS Spring Meeting, San Francisco, April 1998.
    [22] N. Koide, R. Yamanaka, and H. Katayama, “Recent advances of dye-sensitized solar cells and integrated modules at SHARP.”, MRS Proceedings 2009, 1211, 1211-R12-02.
    [23] M. Morooka, R. Ogura, M. Orihashi, and M. Takenaka, “Development of dye-sensitized solar cells for practical applications.”, Electrochemistry, 2009, 77, 960–965.
    [24] R. Service, “Outlook brightens for plastic solar cells.”, Science, 2011, 332, 293.
    [25] K. Miyake, Y. Uetani, T. Seike, T. Kato, K. Oya, K. Yoshimura, and T. Ohnishi, “Development of next generation organic solar cell.” R&D Report, “SUMITOMO KAGAKU”, 2010, 2010-1.
    [26] A. W. Bett, F. Dimroth, W. Guter, R. Hoheisen, E. Oliva, S. P. Philipps, J. Schöne, G. Siefer, M. Steiner, A. Wekkeli, E. Welser, M. Meusel, W. Köstler, and G. Strobl, “Highest efficiency mul-ti-junction solar cell for terrestrial and space applications.”, Pro-ceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 2009, 1–6.
    [27] A. Banerjee, T. Su, D. Beglau, G. Pietka, F. Liu, G. DeMaggio, S. Almutawalli, B. Yan, G. Yue, J. Yang, and S. Guha, “High efficiency, multi-junction nc-Si:h based solar cells at high deposition rate.”, 37th IEEE PVSC, Seattle, June 2011.
    [28] http://www.kaneka-solar.com
    [29] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, and K. Yamamoto, “High efficiency thin film silicon hybrid solar cell module on Im2-class large area substrate.”, Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003, 1566–1569.
    [30] M. A. Green, Solar Cells, 1982, 62-84
    [31] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003, 61-111
    [32] A. Sha, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner, “Photovoltaic Technology: The Case for Thin-Film Solar Cells.”, Science, 1999, 285, 692-698.
    [33] N. Nijegorodov and P. V. C. Luhanga, “Air Mass Analytical and Empirical Treatment; an Improved Formula for Air Mass.”, Renewable Energy, 1996, 7, 57-65.
    [33] B. D. Yuhas and P. Yang, “Nanowire-Based All-Oxide Solar Cells”, Journal of the American Chemical Society, 2009, 131, 3756-3761
    [34] M. Alberto, S. Enrico, S. Francesca, T. Mario and V. Rajaraman, Heterojunction Solar Cell with 2% Efficiency Based on a Cu2O Substrate, Applied Physics Letters, 2006, 88, 163502-163503
    [35] Shiu, H. Y., C. M. Tsai, S. Y. Chen, and T. R. Yew. "Solution-Processed All-Oxide Nanostructures for Heterojunction Solar Cells." Journal of Materials Chemistry, 2011, 44, 17646-17650.
    [36] M. J. Keevers, T. L. Young, U. Schubert and M. A. Green, “10% efficient CSG Minimodules.”22nd European Photovoltaic Solar Energy Conference, Milan, September 2007
    [37] J. Cui and U. J. Gibson, “A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells”, Journal of Physical Chemistry, 2010, 114, 6408–6412
    [38] PVCDROM, http://www.pveducation.org/pvcdrom.
    [39] Wollenstein, J., M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Bottner, and I. Eisele. "Cobalt Oxide Based Gas Sensors on Silicon Substrate for Operation at Low Temperatures." Sensors and Actuators B-Chemical, 2003, 93, 442-448.
    [40] Li, W. Y., L. N. Xu, and J. Chen. "Co3O4 Nanomaterials in Lithi-um-Ion Batteries and Gas Sensors." Advanced Functional Materials, 2005, 15, 851-857.
    [41] Maruyama, T., and S. Arai. "Electrochromic Properties of Cobalt Oxide Thin Films Prepared by Chemical Vapor Deposition." Journal of the Electrochemical Society, 1996, 143, 1383-1386.
    [42] Hu, L. H., Q. Peng, and Y. D. Li. "Selective Synthesis of Co3O4 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion." Journal of the American Chemical Society, 2008, 130, 16136-16137.
    [43] Yan, L., X. M. Zhang, T. Ren, H. P. Zhang, X. L. Wang, and J. S. Suo. "Superior Performance of Nano-Au Supported over Co3O4 Catalyst in Direct N2O Decomposition." Chemical Communications, 2002 860-861.
    [44] Li, Y. G., P. Hasin, and Y. Y. Wu. "NixCo3-XO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution." Advanced Materials, 2010, 22, 1926-1929.
    [45] Xia, X. H., J. P. Tu, Y. J. Mai, X. L. Wang, C. D. Gu, and X. B. Zhao. "Self-Supported Hydrothermal Synthesized Hollow Co3O4 Nanowire Arrays with High Supercapacitor Capacitance." Journal of Materials Chemistry, 2011, 21, 9319-9325.
    [46] Lou, X. W., L. A. Archer, and Z. C. Yang. "Hollow Mi-cro-/Nanostructures: Synthesis and Applications. "Advanced Materials, 2008, 20, 3987-4019.
    [47] Mei, W. M., J. Huang, L. P. Zhu, Z. Z. Ye, Y. J. Mai, and J. P. Tu. "Synthesis of Porous Rhombus-Shaped Co3O4 Nanorod Arrays Grown Directly on a Nickel Substrate with High Electrochemical Performance." Journal of Materials Chemistry, 2012, 22, 9315-9321.
    [48] Li, Y. G., B. Tan, and Y. Y. Wu. "Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability." Nano Letters, 2008, 8, 265-270.
    [49] Nobili, F., F. Croce, R. Tossici, I. Meschini, P. Reale, and R. Marassi. "Sol-Gel Synthesis and Electrochemical Characterization of Mg-/Zr-Doped LiCoO2 Cathodes for Li-Ion Batteries." Journal of Power Sources, 2012, 197, 276-284.
    [50] Spinolo, G., S. Ardizzone, and S. Trasatti. "Surface Characterization of Co3O4 Electrodes Prepared by the Sol-Gel Method." Journal of Electroanalytical Chemistry, 1997, 423, 49-57.
    [51] Yuan, Y. F., X. H. Xia, J. B. Wu, X. H. Huang, Y. B. Pei, J. L. Yang, and S. Y. Guo. "Hierarchically Porous Co3O4 Film with Mesoporous Walls Prepared Via Liquid Crystalline Template for Supercapacitor Application." Electrochemistry Communications, 2011, 13, 1123-1126.
    [52] Salabas, E. L., A. Rumplecker, F. Kleitz, F. Radu, and F. Schuth. "Exchange Anisotropy in Nanocasted Co3O4 Nanowires." Nano Letters, 2006, 6, 2977-2981.
    [53] Rumplecker, A., F. Kleitz, E. L. Salabas, and F. Schuth. "Hard Templating Pathways for the Synthesis of Nanostructured Porous Co3O4." Chemistry of Materials, 2007, 19, 485-496.
    [54] Tuysuz, H., Y. Liu, C. Weidenthaler, and F. Schuth. "Pseudomorphic Transformation of Highly Ordered Mesoporous Co3O4 to CoO Via Reduction with Glycerol." Journal of the American Chemical Society, 2008, 130, 14108-14110.
    [55] Ji, G. B., Z. H. Gong, W. X. Zhu, M. B. Zheng, S. T. Liao, K. Shen, J. S. Liu, and J. M. Cao. "Simply Synthesis of Co3O4 Nanowire Arrays Using a Solvent-Free Method." Journal of Alloys and Compounds, 2009, 476, 579-583.
    [56] Sietsma, J. R. A., J. D. Meeldijk, J. P. den Breejen, M. Ver-sluijs-Helder, A. J. van Dillen, P. E. de Jongh, and K. P. de Jong. "The Preparation of Supported NiO and Co3O4 Nanoparticles by the Nitric Oxide Controlled Thermal Decomposition of Nitrates." Angewandte Chemie-International Edition, 2007, 46, 4547-4549.
    [57] Bocca, C., A. Barbucci, M. Delucchi, and G. Cerisola. "Nick-el-Cobalt Oxide-Coated Electrodes: Influence of the Preparation Technique on Oxygen Evolution Reaction (OER) in an Alkaline Solution." International Journal of Hydrogen Energy, 1999, 24, 21-26.
    [58] Bocca, C., G. Cerisola, E. Magnone, and A. Barbucci. "Oxygen Evolution on Co3O4 and Li-Doped Co3O4 Coated Electrodes in an Alkaline Solution." Journal of Hydrogen Energy, 1999, 24, 699-707.
    [59] Cavalli, R., C. Bocca, A. Miglietta, O. Caputo, and M. R. Gasco. "Albumin Adsorption on Stealth and Non-Stealth Solid Lipid Nanoparticles." Stp Pharma Sciences, 1999, 9, 183-189.
    [60] Zhang, Q., Z. D. Wei, C. Liu, X. Liu, X. Q. Qi, S. G. Chen, W. Ding, Y. Ma, F. Shi, and Y. M. Zhou. "Copper-Doped Cobalt Oxide Electrodes for Oxygen Evolution Reaction Prepared by Magnetron Sputtering." International Journal of Hydrogen Energy, 2012, 37, 822-830.
    [61] Mehrabadi, Z. S., A. Ahmadpour, N. Shahtahmasebi, and M. M. B. Mohagheghi. "Synthesis and Characterization of Cu Doped Cobalt Oxide Nanocrystals as Methane Gas Sensors." Physica Scripta, 2011, 84, 015801
    [62] Wang, X., X. Y. Chen, L. S. Gao, H. G. Zheng, Z. Zhang, and Y. T. Qian. "One-Dimensional Arrays of Co3O4 Nanoparticles: Synthesis, Characterization, and Optical and Electrochemical Properties." Journal of Physical Chemistry B, 2004, 108, 16401-16404.
    [63] Li, Y. G., B. Tan, and Y. Y. Wu. "Mesoporous Co3O4 Nanowire Arrays for Lithium Ion Batteries with High Capacity and Rate Capability." Nano Letters, 2008, 8, 265-270.
    [64] Kumar, A., T. V. V. Rao, S. K. Mukerjee, and V. N. Vaidya. "Recycling of Chemicals from Alkaline Waste Generated During Preparation of UO3 Microspheres by Sol-Gel Process." Journal of Nuclear Materials, 2006, 350, 254-263.
    [65] Hadjiev, V. G., M. N. Iliev, and I. V. Vergilov. "The Raman-Spectra of Co3O4." Journal of Physics C-Solid State Physics, 1988, 21, 199-201.
    [66] Shirai, H., Y. Morioka, and I. Nakagawa. "Infrared and Ra-man-Spectra and Lattice-Vibrations of Some Oxide Spinels." Journal of the Physical Society of Japan, 1982, 51, 592-597.
    [67] Cheng, B. C., Y. H. Xiao, G. S. Wu, and L. D. Zhang. "The Vibra-tional Properties of One-Dimensional ZnO:Ce Nanostructures." Applied Physics Letters, 2004, 84, 416-418.
    [68] Sharma, S. K., and G. J. Exarhos. "Raman Spectroscopic Investigation of Zno and Doped ZnO Films, Nanoparticles and Bulk Material at Ambient and High Pressures." Solid State Phenomena, 1997, 55, 32-37.
    [69] Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2006.
    [70] Zarate, R. A., F. Hevia, S. Fuentes, V. M. Fuenzalida, and A. Zuniga. "Novel Route to Synthesize CuO Nanoplatelets." Journal of Solid State Chemistry, 2007, 180, 1464-1469.
    [71] Abelev, E., D. Starosvetsky, and Y. Ein-Eli. "Potassium Sorbate - a New Aqueous Copper Corrosion Inhibitor Electrochemical and Spectroscopic Studies." Electrochimica Act , 2007, 52, 1975-1982.
    [72] Chang, J. P., Z. Zhang, H. Xu, H. H. Sawin, and J. W. Butterbaugh. "Transition Metal Cleaning Using Thermal Beams." Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1997, 15, 2959-2967.
    [73] Petitto, S. C., and M. A. Langell. "Surface Composition and Structure of Co3O4 (110) and the Effect of Impurity Segregation." Journal of Vacuum Science & Technology A, 2004, 22, 1690-1696.
    [74] He, T., D. R. Chen, X. L. Jiao, Y. L. Wang, and Y. Z. Duan. "Solubility-Controlled Synthesis of High-Quality Co3O4 Nanocrystals." Chemistry of Materials, 2005, 17, 4023-4030.
    [75] Guo, W. L., Y. F. E, L. Gao, L. Z. Fan, and S. H. Yang. "A Catalytic Nanostructured Cobalt Oxide Electrode Enables Positive Potential Operation for the Cathodic Electrogenerated Chemiluminescence of Ru(Bpy)(3)(2+) with Dramatically Enhanced Intensity." Chemical Communications, 2010, 46, 1290-1292.
    [76] Wang, G. X., X. P. Shen, J. Horvat, B. Wang, H. Liu, D. Wexler, and J. Yao. "Hydrothermal Synthesis and Optical, Magnetic, and Supercapacitance Properties of Nanoporous Cobalt Oxide Nanorods." Journal of Physical Chemistry C, 2009, 113, 4357-4361.
    [77] Gu, F., C. Z. Li, Y. J. Hu, and L. Zhang. "Synthesis and Optical Characterization of Co3O4 Nanocrystals." Journal of Crystal Growth, 2007, 304, 369-373.
    [78] Dieter K. Schroder, Semiconductor Material and Device Characterization, 1998, 597
    [79] Llavona, A., C. Diaz-Guerra, M. C. Sanchez, and L. Perez. "Growth, Structure and Luminescence Properties of Electrodeposited and Post-Oxidized Cobalt Oxide Nanowires." Materials Chemistry and Physics, 2010, 124, 1177-1181.
    [80] Chen, Z. G., J. Zou, G. Liu, F. Li, Y. Wang, L. Z. Wang, X. L. Yuan, T. Sekiguchi, H. M. Cheng, and G. Q. Lu. "Novel Boron Nitride Hollow Nanoribbons." ACS Nano, 2008, 2, 2183-2191.
    [81] Carmody M., Gilmore A. “High Efficiency Single CrystalCdTe Solar Cells”, NREL, 2011, 1-47.
    [82] Repins, I., M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi. "19.9 %-Efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor." Progress in Photovoltaics, 2008, 16, 235-239.

    [83] Hsu, C. W., J. M. Shieh, C. H. Shen, J. Y. Huang, H. C. Kuo, B. T. Dai, C. T. Lee, C. L. Pan, and F. L. Yang. "Stable and near-Omni-Directional High-Efficiency Amorphous Si Photovoltaic Devices." 2011 Conference on Lasers and Electro-Optics, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE