簡易檢索 / 詳目顯示

研究生: 黃耀欽
Huang, Yao-Chin
論文名稱: Precise frequency measurement of iodine hyperfine transitions at 671 nm
精確測量碘分子超精細躍遷譜線之頻率
指導教授: 王立邦
Wang, Li-Bang
口試委員: 施宙聰
Shy, Jow-Tsong
鄭王曜
Cheng, Wang-Yau
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 46
中文關鍵詞: 碘分子光頻梳注入式鎖模雷射調制轉移光譜
外文關鍵詞: iodine, optical frequency comb, injection-locked laser, modulation transfer spectroscopy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 穩頻雷射的發展,對於原子分子結構的研究、測量學、光纖通訊系統、精密測量和原子鐘的研究都扮演非常重要角色。以往我們利用特定的原子分子躍遷譜線做為雷射穩頻的基準,得到頻率精準且穩定的雷射光源。

    在本論文,我們利用光頻梳測量碘分子R(78) 4-6超精細躍遷譜線的頻率。在碘分子蒸氣壓為26.6 Pa之下測量a1超精細譜線的頻率為446806191.649(23) MHz。然而,量測a1超精細躍遷譜線的頻率結果與軟體(IodineSpec5)相差2.92 MHz,主要原因是缺乏雷射光源,所以此波段範圍較少文獻資料。

    實驗系統鎖在碘分子超精細譜線躍遷上可以當參考頻率,進一步研究鋰原子的D譜線。


    The stabilized lasers play important roles in the development of atom and molecule physics, metrology, communication systems, precision measurement and atomic clock. In the past, the frequency of light source laser is stabilized to the certain atomic or molecular transitions.

    In the thesis, we measure the absolute frequency of iodine hyperfine transitions (R(78) 4-6) by optical frequency comb. The precise frequency measurement of the a1 component is 446806191.649(23) MHz at the vapor pressure 26.6 Pa. However, the absolute frequency of the a1 component is different about 2.92 MHz to the value of IodineSpec5 software. The main reason is not enough data in this wavelength (667 nm - 775 nm).

    The frequency stabilized system acts as a reference laser and is locked the hyperfine a1 component of R(78) 4-6 transition of 127I2 at 671 nm by modulation transfer spectroscopy. Therefore, the system can help us to study the lithium D lines in the future work.

    摘要 Abstract Contents List of Figures List of Tables Chapter 1 Introduction 1.1 Background 1.2 Motivation 1.3 Sub-Doppler spectroscopy 1.3.1 Doppler broadening 1.3.2 Sub-Doppler techniques Chapter 2 Basic Principles 2.1 Absorption Spectroscopy of Molecular Iodine 2.1.1 Background 2.1.2 Characteristic of molecular iodine 2.1.3 Selection rules of transition 2.1.4 The Hamiltonian of the hyperfine interaction 2.2 Frequency shifting element 2.2.1 Acousto-optic modulator 2.2.2 Electro-optic modulator 2.2.3 Residual amplitude modulation 2.3 Fabry-Pérot cavity 2.3.1 Background 2.3.2 Stable two mirror resonators 2.3.3 The characteristic of the confocal cavity 2.3.4 Mode matching Chapter 3 Experiment 3.1 Experimental setup 3.2 Laser frequency stabilization to 127I2 transitions 3.3 Measurement the frequency of 127I2 R(78) lines Chapter 4 Conclusions 4.1 The absolute transition frequency of iodine 4.1.1 Pressure shift 4.1.2 Power shift 4.1.3 Modulation width (depth) shift 4.1.4 Recoil shift 4.1.5 Alignment between pump and probe beams 4.2 Line broadening 4.3 Lock stability 4.4 Summary Biliography

    [1] S. Ezekiel and R. Weiss, Phys. Rev. Lett. 20, 91 (1968).

    [2] M. D. Levenson and A. L. Schawlow, Phys. Rev. A. 6, 10 (1972).

    [3] G. R. Hanes and C. E. Dahlstrom, Appl. Phys. Lett. 14, 362 (1969).

    [4] T. J. Quinn, Metrologia 36, 211 (1999).

    [5] A. Arie, S. Schiller, E. K. Gustafson, and R. L. Byer, Opt. Lett. 17, 1204 (1992).

    [6] M. L. Eickhoff and J. L. Hall, IEEE Trans. on Instr. and Meas. 44, 155 (1995).

    [7] J. Ye, L. S. Ma and J. L. Hall, Phys. Rev. Lett. 87, 270801 (2001).

    [8] W. Demtröder, Laser Spectroscopy Basic Concepts and Instrumentation, 2nd ed., Springer (1998).

    [9] W. E. Lamb, Jr., Phys. Rev. 134, A1429 (1964).

    [10] R. A. MacFarlane, W. R. Bennett, Jr., and W. E. Lamb, Jr., Appl. Phys. Lett. 2, 189 (1963).

    [11] J. L. Hall, H. G. Robinson, T. Baer, and L. Hollberg, in Advances in laser spectroscopy, F. T. Arechi, F. Strumia, and H. Walther, eds., (Plenum , New York, 1981).

    [12] J. H. Shirley , Opt. Lett. 7, 537 (1982).

    [13] E. Jaatinen and J. M. Chartier, Metrologia 35, 75 (1998).

    [14] D. J. Hopper, Investigation of Laser Frequency Stabilisation Using Modulation Transfer Spectroscopy, Ph. D. Dissertation, University of Technology (2008).

    [15] L. Chen, High-precision spectroscopy of molecular iodine: from optical frequency standards toglobal descriptions of hyperfine interactions and associated electronic structure, Ph. D. Dissertation, University of Colorado (2003).

    [16] M. Broyer, J. Vigue, and J. C. Lehmann, J. Phys. (France) 39, 591 (1978).

    [17] A. E. Siegman, Lasers, 1st ed., University Science Books (1986).

    [18] http://en.wikipedia.org/wiki/Optical_cavity

    [19] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).

    [20] E. D. Black, Am. J. Phys. 69, 79 (2001).

    [21] W. Demtröder, Laser Spectroscopy, 2nd ed., Springer (1996).

    [22] L. J. Gillespie, and L. H. D. Fraser, J. Am. Chem. Soc. 58, 2260 (1936).

    [23] M. Bisi and F. Bertinetto, Metrologia 34, 451 (1997).

    [24] H. R. Simonsen, IEEE Trans. on Instr. and Meas. 46, 141 (1997).

    [25] M. Merimaa, P. Kokkonen, K. Nyholm, and E. Ikonen, Metrologia 38, 311 (2001).

    [26] C. S. Edwards, G. P. Barwood, P. Gill, and W. R. C. Rowley, Metrologia 36, 41 (1999).

    [27] S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nörtershäuser, C. Novotny, and Th. Udem, Opt. Commun. 274, 354 (2007).

    [28] D. N. Ghosh Roy, F. Bertinetto, B. I. Rebaglia, and P. C. Cresto, J. Appl. Phys. 54, 531 (1983).

    [29] M. Gläser, PTB-Bericht, PTB-opt-25, 52 p (1989).

    [30] R. Grimm, J. Mlynek, Appl. Phys. B 49, 179 (1989).

    [31] A. Titov, I. Malinovsky, M. Erin, Opt. Commun. 137, 165 (1997).

    [32] D. N. Ghosh Roy, J. Appl. Phys. 54, 531 (1983).

    [33] J. L. Hall and C. J. Borde, Appl. Phys. Lett. 29, 788 (1976).

    [34] A. Le Floch, R. Le Naour, J. M. Lenormand, and J. P. Tache, Phys. Rev. Lett. 45, 544 (1980).

    [35] B. Stahlberg, E. Ikonen, J. Haldin, J. Hu, T. Ahola, K. Riski, L. Pendrill, U. Kärn, J. Henningsen, H. Simonsen, A. Chartier, and J.-M. Chartier, Metrologia 34, 301 (1997).

    [36] A. Goncharov, A. Amy-Klein, O. Lopez, F. Du Burck, and C. Chardonnet, Appl. Phys. B 78, 725 (2004).

    [37] W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J. Ye, Opt. Lett. 27, 571 (2002).

    [38] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed, Wiley (2007).

    [39] M.-H. Lee, The improvement of femtosecond optical frequency comb, Master Dissertation, National Tsing Hua University, Taiwan (2008).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE