簡易檢索 / 詳目顯示

研究生: 鄭美雲
Cheng, Mei-Yun
論文名稱: 研究中樞神經細胞軸突之新型隔室化細胞培養裝置
A compartmentalized culture device for studying the axons of CNS neurons
指導教授: 張兗君
Chang, Yen-Chung
口試委員: 袁俊傑
Yuan, Chiun-Jye
周韻家
Chou, Yun-Chia
葉世榮
Yen, Shih-Rung
周姽嫄
Chow, Wei-Yuan
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 64
中文關鍵詞: 隔室化細胞培養裝置海馬迴神經元軸突軸突蛋白質
外文關鍵詞: Compartmentalized culture device, Hippocampal neurons, Axons, Axonal proteins
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 來自其他神經元細胞的訊號,經由樹突傳入後,透過神經元的細胞本體整合,再將整合後的訊號經由軸突傳遞,並通過突觸發送到適當的標的。許多急性與慢性神經性疾病會引起軸突損傷或變性,導致嚴重後遺症。因此,研究軸突導向與軸突再生,對於發展有效的臨床治療是非常重要的。在這篇研究中,我將報告一種新型隔室化細胞培養裝置,可用於研究中樞神經系統(CNS)神經元軸突的分子細胞生物學和軸突功能。
    此隔室化細胞培養裝置可用於將中樞神經元的軸突與細胞本體、樹突分離。該裝置由隔膜將之分為頂部與底部兩個隔室所組成,隔膜藉由微通道填充的聚二甲基矽氧烷(PDMS)膜的頂部上連接多孔聚碳酸酯道蝕(PCTE)過濾膜而構建。隔膜的表面和微通道,分別塗覆和填充支持神經元生長與神經突移動的物質。當大鼠海馬神經元在頂部隔室中培養時,軸突和樹突都可以通過PCTE過濾膜中的孔並移行到PDMS膜的微通道中。在體外培養第8至9天後,唯獨軸突能生長抵達至下方隔室,軸突可以透過固定後的免疫螢光染色或實時監測來研究。每一個隔室化細胞培養裝置可以分離出大約3微克軸突蛋白質以供生化分析。此外,隔膜還可阻礙小分子在頂部和底部隔室之間的移動,因此上、下隔間可以分別接受獨立處理,觀察不同操作對於神經細胞本體與樹突或軸突的影響。接著,將討論如何應用此裝置,用在神經元軸突的各種研究和篩選不同試劑對於調節軸突功能的影響。結論,隔室化細胞培養裝置可以做為有效分離中樞神經軸突與中樞神經元的工具之一,並可用於對軸突進行深入的分子生物學分析,以及調節軸突功能的藥物快篩。


    The cell body of neuron integrates various signals from dendrites, and the integral signals are transmitted by axons and sent to appropriate targets via synapses. Devastating sequels resulting from axonal injury and degeneration are common in many acute and chronic neurological diseases. The research in axonal guidance and regeneration is important to develop effective clinical treatments. Here, I report a novel compartmentalized culture device for studying the molecular and cell biology and functions of the axons of central nervous system (CNS) neurons.
    The compartmentalized culture device allows the spatial separation of the somatodendrites and axons of CNS neurons. The device consists of two compartments separated by a septum constructed by attaching a porous polycarbonate track etch (PCTE) filter on top of a microchannel-filled polydimethylsiloxane (PDMS) membrane. The surface and microchannels of the septum are coated and filled, respectively, with materials that support neuron growth and neurite migration. When rat hippocampal neurons are cultured in the top compartment, both the axons and dendrites can migrate through the pores in PCTE filter and into the microchannels of the PDMS membrane. After 8-9 days in vitro, axons are the only processes that emerge from the septum and grow in the bottom compartment. Axons could be either studied by fluorescence immunocytochemistry after fixation or monitored in real-time. Axons containing ~3 µg protein can be isolated from each device for biochemical analyses. In addition, the septum also impedes the movement of small molecules between the top and bottom compartments. This feature allows the somatodendrites and axons of neurons, which occupy the top and bottom compartments of the device, respectively, to be manipulated independently. The potential applications of the device as a tool in diverse studies concerning neuronal axons and in screening reagents that regulate axonal functions have also been discussed. In conclusion, the compartmentalized culture device will be a valuable tool in separating axons from the central neurons for conducting in-depth molecular biology analyses of the axon and high-throughput screening for drugs regulating axonal functions.

    中文摘要...i ABSTRACT...ii 壹、緒論...1 (一) Campenot chamber...2 (二) Microfluidic-based device...3 (三) Boyden chamber...4 (四) Micropatterned glass chips...4 貳、實驗材料與方法...7 (一) 實驗材料...7 (二) 裝置的製作方式...8 (三) 神經細胞培養...10 (四) 免疫螢光染色法...10 (五) 由裝置中收集軸突與神經元...11 (六) 西方點墨分析...11 (七) 裝置隔離效能實驗...11 (八) 實時觀察活體神經細胞的軸突...12 (九) 谷氨酸興奮毒性研究...12 (十) 量化與統計...13 参、結果...15 (一) 裝置的製作...15 (二) 裝置中神經細胞生長的表徵...15 (三) 裝置中軸突的顯微表徵...17 (四) 裝置中軸突的生物化學分析...17 (五) 隔膜阻隔小分子在隔室之間的運動...18 (六) 紫杉醇可保護由谷氨酸造成的興奮毒性...18 肆、討論...20 伍、結論...24 陸、圖片與說明...25 圖一. 生長錐暴露在陽性線索梯度的細胞骨架動態變化...25 圖二. Campenot chamber培養系統...27 圖三. Microfluidic-based device製作流程與示意圖...28 圖四. Boyden chamber示意圖...30 圖五. Micropatterned glass chip示意圖與神經元構造在glass chip的特徵...31 圖六. Micropatterned glass chip不同區域內的神經元結構...32 圖七. 隔室化裝置的隔膜可將神經元的細胞本體、樹突與軸突分開...33 圖八. 隔室化細胞培養裝置的製作流程圖...34 圖九. 隔室化細胞培養裝置中各個組成之實際照片...35 圖十. 隔膜底部表面軸突的生長情形,以及隔膜不同區域的神經細胞表徵...37 圖十一. 裝置隔膜底面的軸突經免疫螢光染色和實時監測研究...38 圖十二. 裝置收集的軸突蛋白定量以及神經細胞與軸突蛋白的生化分析...40 圖十三. 隔室化培養裝置的隔膜可阻礙小分子在隔室之間的移動...42 圖十四. 紫杉醇可以保護谷氨酸對細胞本體與樹突引起的軸突變性...43 柒、表格...45 捌、參考文獻...46 玖、附錄...54

    Alto, L.T., Havton, L.A., Conner, J.M., Hollis Ii, E.R., Blesch, A., and Tuszynski, M.H. (2009). Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12, 1106-1113.
    Aschrafi, A., Kar, A.N., Gale, J.R., Elkahloun, A.G., Vargas, J.N.S., Sales, N., Wilson, G., Tompkins, M., Gioio, A.E., and Kaplan, B.B. (2016). A heterogeneous population of nuclear-encoded mitochondrial mRNAs is present in the axons of primary sympathetic neurons. Mitochondrion 30, 18-23.
    Bertrand, J., Winton, M.J., Rodriguez-Hernandez, N., Campenot, R.B., and McKerracher, L. (2005). Application of Rho Antagonist to Neuronal Cell Bodies Promotes Neurite Growth in Compartmented Cultures and Regeneration of Retinal Ganglion Cell Axons in the Optic Nerve of Adult Rats. The Journal of Neuroscience 25, 1113-1121.
    Brunello, C.A., Jokinen, V., Sakha, P., Terazono, H., Nomura, F., Kaneko, T., Lauri, S.E., Franssila, S., Rivera, C., Yasuda, K., et al. (2013). Microtechnologies to fuel neurobiological research with nanometer precision. Journal of Nanobiotechnology 11, 11-18.
    Campenot, R.B. (1977). Local control of neurite development by nerve growth factor. Proceedings of the National Academy of Sciences 74, 4516-4519.
    Campenot, R.B., and MacInnis, B.L. (2004). Retrograde transport of neurotrophins: Fact and function. Journal of Neurobiology 58, 217-229.
    Cattin, A.-L., and Lloyd, A.C. (2016). The multicellular complexity of peripheral nerve regeneration. Current Opinion in Neurobiology 39, 38-46.
    Cheng, H.-H., Huang, Z.-H., Lin, W.-H., Chow, W.-Y., and Chang, Y.-C. (2009). Cold-induced exodus of postsynaptic proteins from dendritic spines. Journal of Neuroscience Research 87, 460-469.
    Conforti, L., Gilley, J., and Coleman, M.P. (2014). Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 15, 394-409.
    Cox, L.J., Hengst, U., Gurskaya, N.G., Lukyanov, K.A., and Jaffrey, S.R. (2008). Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival. Nat Cell Biol 10, 149-159.
    Dent, E.W., Gupton, S.L., and Gertler, F.B. (2011). The growth cone cytoskeleton in axon outgrowth and guidance. In Cold Spring Harb Perspect Biol.
    Dong, X.-x., Wang, Y., and Qin, Z.-h. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica 30, 379-387.
    Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689.
    Filler, A.G., Whiteside, G.T., Bacon, M., Frederickson, M., Howe, F.A., Rabinowitz, M.D., Sokoloff, A.J., Deacon, T.W., Abell, C., Munglani, R., et al. (2010). Tri-partite complex for axonal transport drug delivery achieves pharmacological effect. BMC Neuroscience 11, 8-8.
    Friese, M.A., Schattling, B., and Fugger, L. (2014). Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol 10, 225-238.
    Furukawa, K., and Mattson, M.P. (1995). Taxol stabilizes [Ca 2+] i and protects hippocampal neurons against excitotoxicity. Brain research 689, 141-146.
    Gordon-Weeks, P.R. (2000). Neuronal Growth Cones (Cambridge University Press).
    Gumy, L.F., Yeo, G.S.H., Tung, Y.-C.L., Zivraj, K.H., Willis, D., Coppola, G., Lam, B.Y.H., Twiss, J.L., Holt, C.E., and Fawcett, J.W. (2011). Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17, 85-98.
    Hayashi, H., Campenot, R.B., Vance, D.E., and Vance, J.E. (2004). Glial Lipoproteins Stimulate Axon Growth of Central Nervous System Neurons in Compartmented Cultures. Journal of Biological Chemistry 279, 14009-14015.
    He, Z., and Jin, Y. (2016). Intrinsic Control of Axon Regeneration. Neuron 90, 437-451.
    Hill, C.S., Coleman, M.P., and Menon, D.K. (2016). Traumatic axonal injury: mechanisms and translational opportunities. Trends in neurosciences 39, 311-324.
    Hosie, K.A., King, A.E., Blizzard, C.A., Vickers, J.C., and Dickson, T.C. (2012). Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model. ASN NEURO 4, 47-57.
    Hsu, Y.-H., Wu, H.-I., Cheng, W.-S., Chung, H.-W., Wu, T.-Y., and Chang, Y.-C. (2012). A chip-based method for studying the effects of exogenous proteins on neuronal axons. Analytical Biochemistry 427, 1-9.
    Huang, H., Yang, W., Wang, T., Chuang, T., and Fu, C. (2007). 3D high aspect ratio micro structures fabricated by one step UV lithography. Journal of Micromechanics and Microengineering 17, 291-296.
    Jung, H., Yoon, B.C., and Holt, C.E. (2012). Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 13, 308-324.
    Keenan, T.M., and Folch, A. (2008). Biomolecular gradients in cell culture systems. Lab on a chip 8, 10.1039/b711887b.
    Kim, H., Jeong, S., Koo, C., Han, A., and Park, J. (2016). A Microchip for High-Throughput Axon Growth Drug Screening. Micromachines 7, 114-126.
    King, A.E., Southam, K.A., Dittmann, J., and Vickers, J.C. (2013). Excitotoxin-induced caspase-3 activation and microtubule disintegration in axons is inhibited by taxol. Acta Neuropathologica Communications 1, 59-67.
    Koenig, E. (2009). Cell Biology of the Axon (Springer Berlin Heidelberg).
    Laemmli, U.K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 227, 680-685.
    Lai, T.W., Zhang, S., and Wang, Y.T. (2014). Excitotoxicity and stroke: identifying novel targets for neuroprotection. Progress in neurobiology 115, 157-188.
    Lei, W.-L., Xing, S.-G., Deng, C.-Y., Ju, X.-C., Jiang, X.-Y., and Luo, Z.-G. (2012). Laminin/[beta]1 integrin signal triggers axon formation by promoting microtubule assembly and stabilization. Cell Res 22, 954-972.
    Lein, P.J., Banker, G.A., and Higgins, D. (1992). Laminin selectively enhances axonal growth and accelerates the development of polarity by hippocampal neurons in culture. Developmental Brain Research 69, 191-197.
    Li, S., Overman, J.J., Katsman, D., Kozlov, S.V., Donnelly, C.J., Twiss, J.L., Giger, R.J., Coppola, G., Geschwind, D.H., and Carmichael, S.T. (2010). An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 13, 1496-1504.
    Lingor, P., Koch, J.C., Tönges, L., and Bähr, M. (2012). Axonal degeneration as a therapeutic target in the CNS. Cell and Tissue Research 349, 289-311.
    Lowery, L.A., and Vactor, D.V. (2009). The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10, 332-343.
    MacInnis, B.L., and Campenot, R.B. (2002). Retrograde Support of Neuronal Survival Without Retrograde Transport of Nerve Growth Factor. Science 295, 1536-1539.
    Mammadov, B., Sever, M., Guler, M.O., and Tekinay, A.B. (2013). Neural differentiation on synthetic scaffold materials. Biomaterials Science 1, 1119-1137.
    Mayford, M., Siegelbaum, S.A., and Kandel, E.R. (2012). Synapses and Memory Storage. Cold Spring Harbor Perspectives in Biology 4, 1-18.
    McAllister, A.K. (2007). Dynamic Aspects of CNS Synapse Formation. Annual Review of Neuroscience 30, 425-450.
    Millet, L.J., and Gillette, M.U. (2012). New perspectives on neuronal development via microfluidic environments. Trends in Neurosciences 35, 752-761.
    Millet, L.J., Stewart, M.E., Nuzzo, R.G., and Gillette, M.U. (2010). Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab on a Chip 10, 1525-1535.
    Minis, A., Dahary, D., Manor, O., Leshkowitz, D., Pilpel, Y., and Yaron, A. (2014). Subcellular transcriptomics—Dissection of the mRNA composition in the axonal compartment of sensory neurons. Developmental Neurobiology 74, 365-381.
    Park, J., Kim, S., Li, J., and Han, A. (2011). Quantitative CNS Axon Growth Analysis for Drug Screening in a Microfluidic Neuron Culture Platform. Paper presented at: MicroTAS The 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences.
    Poon, M.M., Choi, S.-H., Jamieson, C.A.M., Geschwind, D.H., and Martin, K.C. (2006). Identification of Process-Localized mRNAs from Cultured Rodent Hippocampal Neurons. The Journal of Neuroscience 26, 13390-13399.
    Taylor, A.M., Berchtold, N.C., Perreau, V.M., Tu, C.H., Li Jeon, N., and Cotman, C.W. (2009). Axonal mRNA in Uninjured and Regenerating Cortical Mammalian Axons. The Journal of Neuroscience 29, 4697-4707.
    Taylor, A.M., Blurton-Jones, M., Rhee, S.W., Cribbs, D.H., Cotman, C.W., and Jeon, N.L. (2005). A microfluidic culture platform for CNS axonal injury, regeneration and transport. Nat Meth 2, 599-605.
    Taylor, A.M., Rhee, S.W., Tu, C.H., Cribbs, D.H., Cotman, C.W., and Jeon, N.L. (2003). Microfluidic Multicompartment Device for Neuroscience Research. Langmuir 19, 1551-1556.
    Teixeira, A.I., Ilkhanizadeh, S., Wigenius, J.A., Duckworth, J.K., Inganäs, O., and Hermanson, O. (2009). The promotion of neuronal maturation on soft substrates. Biomaterials 30, 4567-4572.
    van Niekerk, E.A., Tuszynski, M.H., Lu, P., and Dulin, J.N. (2016). Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Molecular & Cellular Proteomics 15, 394-408.
    Wang, J.T., Medress, Z.A., and Barres, B.A. (2012). Axon degeneration: Molecular mechanisms of a self-destruction pathway. The Journal of Cell Biology 196, 7-18.
    Wang, Y.-Y., Wu, H.-I., Hsu, W.-L., Chung, H.-W., Yang, P.-H., Chang, Y.-C., and Chow, W.-Y. (2014). In vitro growth conditions and development affect differential distributions of RNA in axonal growth cones and shafts of cultured rat hippocampal neurons. Molecular and Cellular Neuroscience 61, 141-151.
    Willis, D., Li, K.W., Zheng, J.-Q., Chang, J.H., Smit, A., Kelly, T., Merianda, T.T., Sylvester, J., van Minnen, J., and Twiss, J.L. (2005). Differential Transport and Local Translation of Cytoskeletal, Injury-Response, and Neurodegeneration Protein mRNAs in Axons. The Journal of Neuroscience 25, 778-791.
    Willis, D.E., and Twiss, J.L. (2011). Profiling Axonal mRNA Transport. In RNA Detection and Visualization: Methods and Protocols, J.E. Gerst, ed. (Totowa, NJ: Humana Press), pp. 335-352.
    Willis, D.E., van Niekerk, E.A., Sasaki, Y., Mesngon, M., Merianda, T.T., Williams, G.G., Kendall, M., Smith, D.S., Bassell, G.J., and Twiss, J.L. (2007). Extracellular stimuli specifically regulate localized levels of individual neuronal mRNAs. The Journal of Cell Biology 178, 965-980.
    Wu, H.-I., Cheng, G.-H., Wong, Y.-Y., Lin, C.-M., Fang, W., Chow, W.-Y., and Chang, Y.-C. (2010). A lab-on-a-chip platform for studying the subcellular functional proteome of neuronal axons. Lab on a Chip 10, 647-653.
    WU, T.-Y., LIU, C.-I., and CHANG, Y.-C. (1996). A study of the oligomeric state of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-preferring glutamate receptors in the synaptic junctions of porcine brain. Biochemical Journal 319, 731-739.
    Zheng, J.Q. (2001). A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J Neurosci 21, 9291-9303.
    Zhou, B., Yu, P., Lin, M.-Y., Sun, T., Chen, Y., and Sheng, Z.-H. (2016). Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. The Journal of Cell Biology 214, 103-119.
    Zweifel, L., Kuruvilla, R., and D Ginty, D. (2005). Functions and mechanisms of retrograde neurotrophin signaling, Vol 6.

    QR CODE