簡易檢索 / 詳目顯示

研究生: 吳昌儒
論文名稱: 運用模糊認知圖進行以RFID為基之逆物流模式決策支援方法與應用
Using Fuzzy Cognitive Map for RFID-based Reverse Logistic Model Decision Support and Application
指導教授: 張瑞芬
Amy J. C. Trappey
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 逆物流RFIDEPCglobal Network模糊認知圖基因演算法
外文關鍵詞: Reverse Logistics, RFID, EPCglobal Network, Fuzzy Cognitive Map(FCM), Genetic Algorithm
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於環保意識抬頭,以及相關的法令的制定(如:IEEE、RoHS……等),自由的退貨政策,使得針對產品或零組件如何有效的回收、再利用成為近年來重要的議題之ㄧ。一般供應鏈主要是從供應者的供貨到製造者的加工製造,再到物流中心,再到零售商,最後才到消費者手上。而當我們增加環保的考量(例如:ISO14000 的認證),或是其他的因素例如:提昇企業的形象進而增加銷售量、有效的資源利用,發展新方法降低製造成本和時間,延長產品的生命週期,和降低部分設備的設置等因素。企業可能就須在物流體系中再扮演廢物清理、回收再利用、再處理、再製造、再修理、退貨回收、的角色。以達到前述的效益,而關於這樣的流程我們稱它為逆物流(Reverse Logistics)。本研究希望透過建立整體供應鏈的模糊認知圖,對於整體逆物流的系統發生結合正向物流之整體供應鏈中各角色內部作業因子的影響評估和找出適當的決策因子狀態進行系統的調整,模糊認知圖能夠透過圖像化的方式讓決策者輕易的了解供應鏈當中各因子間的因果關係和交互影響程度,將即時收集的數據運用基因演算法的方式做為認知圖中權重的訓練,提供一個更客觀的逆物流之模糊認知圖模型。由於產品跟部分零組件的回收,在數量、地點、時間上較分散且不確定,因此,利用RFID的技術的導入,應用EPCglobal Network的架構下,進行有效率的監控供應鏈上產品/零組件/包裝容器流通以及相關的作業資訊。透過RFID的技術可解決在產品流通資訊上無法及時取得的問題,運用即時監控的特性可進行供應鏈上相關數據的收集,藉由本研究的模糊認知圖和資訊系統,結合了EPCglobal Network 和RFID 技術,再利用案例中的物流箱回收管理進行本研究所提出的推論與決策分析方法。透過這項研究使得公司企業在進行決策時,能夠達到迅速且有效的決策支援,提升競爭力和跟供應鏈的效率。


    With increasing environmental consciousness, green directives (e.g., WEEE) and liberal return policies, recycling, re-use, re-assembly of materials, components and products are attracting more attention from manufacturers and the public. Consequently, reverse logistics research is being used to analyze the processes associated with the flows of products, components and materials from end users to re-users (e.g., second markets or landfills). The components may be widely dispersed during reverse logistics, which makes it difficult to efficiently collect, re-use and re-assemble disposed components for reprocessing and remanufacturing. As a result, Radio Frequency Identification (RFID) technology combined with EPCglobal Network architecture is applied to enable efficient product and component data collection and data transmission. The proposed information system uses RFID for real time data tracking and the EPCglobal network architecture defines the layers (RFID tags, RFID readers, EPC middleware, EPC information service, Object naming service, and EPC discovery service) for data transmission. This research develops a decision support model which integrates fuzzy cognitive maps and genetic algorithm. The major advantage of using cognitive maps is that the model and the relationships among nodes (states) are linguistically expressed both quantitatively and qualitatively. Combining the model and the information system, and integrating the EPCglobal network architecture and RFID technology, the goals of the research are achieved. Inference analysis contributes to the system response forecasting and decision analysis supports the manager make a stable reverse logistics system by adjusting some internal operation factors. This research provides a more comprehensive view of the supply chain, and achieves rapid and effective decision-making support, to enhance competitiveness and efficiency of the supply chain.

    誌謝詞 III 圖目錄 VI 表目錄 VIII 一、 緒論 1 1.1. 研究背景 1 1.2. 研究動機和目的 2 1.3. 研究方法和步驟 3 1.4. 論文架構 4 二、 文獻探討 5 2.1. 模糊認知圖(Fuzzy Cognitive Map, FCM) 5 2.1.1. 模糊認知圖的定義 5 2.1.2. 模糊認知圖的演進 6 2.1.3. 模糊認知圖的應用 11 2.2. 逆物流的重要性 12 2.2.1. 逆物流的定義 12 2.2.2. 逆物流的活動和產品回收的因素 14 2.2.3. 逆物流的運作模式 17 2.3. RFID技術 19 2.3.1. RFID系統組成與作業原理 20 2.3.2. RFID與EPCglobal Network 28 2.3.3. RFID現今的應用 31 三、 研究方法 34 3.1. 模糊認知圖的建構 34 3.1.1. 概念節點的決定 35 3.1.2. 權重的學習 36 3.2. FCM推論與因果分析 40 3.2.1. 資料轉換 40 3.2.2. 模糊認知圖的推論模式 41 3.2.3. 模糊認知圖之決策模式 43 3.3. 資料的蒐集方法 44 3.3.1. EPCglobal Network運作模式 44 3.3.2 Web Service 的傳遞架構與解析模式 47 四、 案例研究 50 4.1 研究案例背景 50 4.1.1 冷鏈食品管理 50 4.1.2 資料收集之作業流程 51 4.2 案例模糊認知圖之建立 53 4.2.1 案例之認知圖節點定義 53 4.2.2 物流箱管理之模糊認知圖 54 4.3 模糊認知圖之權重訓練 55 4.4案例分析模式 58 4.4.1 分析資料定義 58 4.4.2 物流箱管理預測分析 58 4.4.3 案例之決策分析模式驗證 68 4.5 小結 69 五、 結論 71 六、 文獻探討 73

    [1] Athanasios, K.T., Ilias, K., Konstantinos, G.M., 2003, “Using fuzzy cognitive maps as a decision support system for political decisions,” Lecture Notes in Computer Science, Vol. 2563, pp. 172-182.
    [2] Beier, S., Grandison, T., Kailing, K., and Rantzau, R., 2006, “Discovery Services-Enabling RFID Traceability in EPCglobal Networks,” Proc. of the 13th International Conference on Management of Data, Delhi, India, Dec., pp. 1-4.
    [3] Dickerson J.A., Kosko B., 1993, “Virtual worlds as fuzzy cognitive maps,” in Proc. IEEE Virtual Reality Annu. Int. Symp., pp. 417-477.
    [4] Domdouzis, K., Kumar, B., Anumba, C., 2007, “Radio-Frequency Identification (RFID) applications: A brief introduction,” Advanced Engineering Informatics, Vol. 21, No. 4, pp. 350-355.
    [5] Eden, C., Ackermann, F. 2004, “Analyzing cognitive maps to help structure issues or problems,” European Journal of Operational Research, Vol.159, pp. 673-686.
    [6] Fleischmann, M., Jacqueline, Bloemhof-Ruwaard, M., Dekker, R., Vander Laan,E., Nunen, J.V., Wassenhove, L.V., 1997, “Quantitative Models for Reverse Logistics: A Review,” European Journal of Operation Research, Vol. 103, No. 1, pp. 1-17.
    [7] Hagiwara M., 1992, “Extended fuzzy cognitive maps,” in Proc. 1st IEEE Int. Conf. Fuzzy Syst., pp. 795–801.
    [8] Jones, T., 1998, “Strategic Supply Chain Alignment-Best Practice in Supply Chain Management,” Reverse Logistics-Bringing the Product Back: Taking it into the Future.
    [9] José Aguilar, 2004, “Dynamic Random Fuzzy Cognitive Maps,” Computacióny sistemas, Vol. 7, No. 4, pp. 260-270.
    [10] Kosko B., 1986, “Fuzzy cognitive maps,” Int. J. Man-Mach. Stud. , Vol. 24, pp. 65–75.
    [11] Kelly, G.A., 1968, “A brief introduction to personal construct theory,” Perspectives in Personal Construct Theory, pp. 1-29.
    [12] Kosko, B., 1987, “Adaptive inference in fuzzy knowledge networks,” Proceeding of the First International Conference on Neural Networks, Vol. 3, pp. 261-268.
    [13] Kim, H.S., Lee, K.C., 1998, “Fuzzy implications of fuzzy cognitive map with emphasis on fuzzy causal relationship and fuzzy partially causal relationship,” Fuzzy Sets and Systems, Vol. 97, No. 3, pp. 303-313.
    [14] Kardaras, D., Karakostas, B. 1999. “The use of fuzzy cognitive maps to stimulate the information systems strategic planning process,” Information and Software Technology, Vol. 4, No. 4, pp. 197-210.
    [15] Kang, I., Lee, S., Choi, J., 2004, “Using fuzzy cognitive map for the relationship management in airline service,” Expert Systems with Applications, Vol. 26, No. 4, pp. 545-555.
    [16] Konar, A., Chakraborty, U.K., 2005, “Reasoning and unsupervised learning in a fuzzy cognitive map,” Information Sciences, Vol. 170, No.2-4, pp. 419-441.
    [17] Liu, Z., Miao, Y., 1999, “Fuzzy cognitive map and its causal inferences,” IEEE International Fuzzy Systems Conference Proceedings, Vol. 3, pp. 1540-1545.
    [18] Lee, S., Han, I., 2000, “Fuzzy cognitive map for the design of EDI controls,” Information and Management, Vol. 37, No. 1, pp. 37-50.
    [19] Lee, K.C., Kim, J.S., Chung, H.N., Kwon, S.J., 2002, “Fuzzy cognitive map approach to web-mining inference amplification,” Expert Systems with Applications, Vol. 22, No. 3, pp. 197-211.
    [20] Lee, S., Kim, B. G., Lee, K., 2004, “Fuzzy cognitive map-based approach to evaluate EDI performance: A test of causal model,” Expert Systems with Applications, Vol. 27, No. 2, pp.287-299.
    [21] Miao Y., Liu C., 2000, “On causal inference in Fuzzy Cognitive Map,” IEEE Transaction on Fuzzy Systems, Vol. 8, No. 1, pp. 107-120.
    [22] Miao Y., Liu C., Siew C., Miao C., 2001 “Dynamic Cognitive Network: an extension of Fuzzy Cognitive Maps,” IEEE Transaction on Fuzzy Systems, Vol.9, No. 5, pp. 760-770.
    [23] Mendoza, G.A., Prabhu, R., 2006, “Participatory modeling and analysis for sustainable forest management: Overview of soft system dynamics models and applications,” Forest Policy and Economics, Vol. 9, No. 2, pp. 179-196.
    [24] Osei-Bryson, K., 2004, “Generating consistent subjective estimates of the magnitudes of causal relationships in fuzzy cognitive maps,” Computers and Operations Research, Vol. 31, No. 8, pp.1165-1175.
    [25] Ozesmi, U., Ozesmi, S.L., 2004. “Ecological models based on people’s knowledge: A multi-step fuzzy cognitive mapping approach,” Ecological Modelling, Vol. 176, No. 1-2, pp. 43-64.
    [26] Papageorgiou, E.I., Spyridonos, P.P., Stylios, C.D., Ravazoula, P., Groumpos, P.P., Nikiforidis, G.N., 2006, “Advanced soft computing diagnosis method for tumour grading,” Artificial Intelligence in Medicine, Vol. 36, No. 1, pp. 59-70.
    [27] Prahinski, C., Kocabasoglu, C., 2006, “Empirical Research Opportunities in Reverse Supply Chains,” Omega, The International Journal of Management Science, Vol. 34 No. 6, pp. 519-532.
    [28] Rogers, D.S., Tibben-Lembke, R., 2001, “An Examination of Reverse Logistics Practices”, Journal of Business Logistics, Vol. 22, No. 2, pp. 129-148.
    [29] Rai, V., Kim, D., 2002, “Principal–agent problem: A cognitive map approach,” Electronic Commerce Research and Applications, Vol. 1, No. 2, pp. 174-192.
    [30] Rodriguez-Repiso, L., Setchi, R., Salmeron, J.L., 2007, “Modelling IT projects success with fuzzy cognitive maps,” Expert Systems with Applications, Vol. 32, No. 2, pp. 543-559.
    [31] Styblinski, M.A., Meyer, B.D., 1988, “Fuzzy cognitive maps, signal flow graphs, and qualitative circuit analysis,” In Proceedings of the 2nd IEEE international conference on neural networks, Vol. 2, pp. 549-556.
    [32] Stock, J.R., 1992, “Reverse Logistics,” Oak Brook, IL: Council of Logistics Management.
    [33] Stock, J.R., 1998, “The Development and Implementation of Reverse Logistics Programs”, Oak Book, IL: Council of Logistics Management.
    [34] Schneider, M., Shnaider, E., Kandel, A., Chew, G., 1998. “Automatic construction of FCMs,” Fuzzy Sets and Systems, Vol. 93, No. 2, pp. 161-172.
    [35] Stach, W., Kurgan, L., Pedrycz, W., Reformat M. 2005, “Genetic learning of fuzzy cognitive maps,” Fuzzy Sets and Systems, Vol. 153, No. 3, pp. 371-401.
    [36] Taber, W.R., Siegel, M.A., 1987, “Estimation of expert weights using fuzzy cognitive maps,” Proceeding of the First Internutionul Conference on Neural Networks, Vol. 2, pp. 319-325.
    [37] Tedjini, S., Vuong, T.P., Beroulle, V., 2005, “Antennas for RFID tags,” Joint sOc-EUSAI conference, Grenoble, France, Vol. 212, pp. 19-22.
    [38] Tappey, A.J.C., Trappey, C.V., Wu, C.R., and Hsu, F.C., B.J.G., 2009, “Using Fuzzy Cognitive Map for Evaluation of RFID-based Reverse Logistics Services,” IEEE International Conference on Systems, Man, and Cybernetics, Oct 11-14, Hyatt Regency Riverwalk, San Antonio, Texas, USA.
    [39] Wamba S.F., Lefebvre L.A., Bendavid Y., Lefebvre E., 2008, “Exploring the impact of RFID technology and the EPC network on mobile B2B eCommerce: A case study in the retail industry,” Int. J. Production Economics, Vol. 112, pp. 614-629.
    [40] Zhang, W., Chen, S, 1988. “A logical architecture for cognitive maps,” Proceeding of the 2nd International Conference on Neural Networks, Vol. 1, pp. 231-238.
    [41] Zhang, W.R., Chen, S.S., Bezdek, J.C., 1989, “Pool2: A generic system for cognitive map development and decision analysis,” IEEE Transactions on SMC, Vol. 19, pp. 31-39.
    [42] EAN.UCC, 1999, “White Paper on Radio Frequency Identification”.
    [43] 魏凡峰,「逆物流對供應鏈體系成本與時間之影響」,指導教授:耿伯文,成功大學工業管理研究所碩士論文,2002。
    [44] 安東一真,「RFID 邁向快速成長時所面對的問題」,日經BP 社:RFID 技術與應用, Nov. 2004, 10 頁。
    [45] 安東一真,「獲得許多實驗證實的RFID 基本性能」,日經BP 社:RFID 技術與應用,Nov. 2004,17 頁。
    [46] 吉村和夫,「以自動化取代傳統人海戰術式的品檢作業為目標」,日經BP 社:RFID 技術與應用,Nov. 2004,91 頁。
    [47] 陳宏宇,「RFID系統入門-無線射頻辨識系統」,松崗圖書,2004。
    [48] 王裕濱,「以RFID標準化資訊技術為基之全球供應鏈精敏運籌追蹤與決策支援方法及應用」,指導教授:張瑞芬,清華大學工業工程與工程管理學系工程碩士論文,2008。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE