簡易檢索 / 詳目顯示

研究生: 楊政憲
Yang, Jeng-Shian
論文名稱: 使用新穎主動層材料與原子層沉積成長氧化鋅之高效反式有機太陽電池
High-Efficiency Inverted Organic Solar Cells with novel donor materials and atomic layer deposited Zinc Oxide as electron selective layer
指導教授: 洪勝富
Horng, Sheng-Fu
口試委員: 洪勝富
孟心飛
冉曉雯
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: 原子層沉積反式結構氧化鋅有機太陽能電池
外文關鍵詞: Atomic layer deposition, Inverted structure, Zinc Oxide, Organic solar cells
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究將原子層沉積法(Atomic layer deposition , ALD)成長高品質的氧化鋅(Zinc Oxide,ZnO)薄膜應用於新穎主動層材料製作出高效反式結構有機太陽能電池,並探討其中之研究發展,原子層沉積法可以成長出緻密且一致性高的氧化鋅薄膜,且氧化鋅抗水氧能力強,且具有良好的載子傳輸能力。
      在先前實驗室研究中已利用原子層沉積法所成長的氧化鋅薄膜當作電子傳輸層(Electron Selective Layer),並應用於軟性基板上所製作的反式結構有機太陽能電池達4.18%,因此我們將深入探討原子層沉積法的成長參數以及如何有效定義出氧化鋅的成長區域,來得到我們想要的高品質氧化鋅薄膜,接著並探討新穎主動層材料的特性與分析,且應用於全溶液製程的反式結構(ITO/ZnO/Blend/PEDOT:PSS/Ag)上,得到高效率反式太陽電池。
      最後將探討對元件的最佳化退火處理,在此退火處理後我們成功將元件效率提升到7.148%,這是我們利用原子層沉積法成長氧化鋅薄膜,並利用新穎材料所製作的反式結構太陽電池的最佳效率。


    Atomic layer deposition (ALD) is a kind of chemical vapor deposition (CVD) technique, it have conformal and high quality film can be deposited by ALD process and Zinc Oxide has high mobility and air-stable, Zinc Oxide layer can be prepared by ALD at low temperatures and in other research with the ALD-grown Zinc Oxide electron selective layer in flexible inverted Organic photovoltaic devices, a maximum PCE of 4.18%.
    In this work, we using solution process design inverted structure is ITO/ZnO/Blend/PEDOT:PSS/Ag, and using ALD- growth Zinc Oxide at ITO glass as electron selective layer and using novel donor material as active layer to achieved high efficiency inverted organic solar cells. The devices exhibit a PCE of 7.148% with optimum film thickness and annealing method.

    致謝 I 摘要 IV ABSTRACT V 目錄 VI 圖目錄 VIII 表目錄 IX 第一章 序論 - 1 - 1.1 研究背景 - 1 - 1.1.1前言 - 1 - 1.1.2太陽能電池發展 - 2 - 1.1.3有機共軛高分子有機太陽能電池發展歷程 - 3 - 1.2 研究動機 - 6 - 1.2.1有機共軛高分子太陽能電池的優點 - 6 - 1.2.2 P3HT與PCBM混合之有機高分子太陽能電池 - 7 - 1.2.3新穎主動層材料 - 7 - 1.2.4反式結構太陽能電池 - 7 - 1.2.5 原子層沉積(Atomic layer deposition , ALD) - 7 - 1.3 論文架構 - 8 - 第一章 參考文獻 - 9 - 第二章 實驗原理 - 10 - 2.1 太陽能電池原理簡述 - 10 - 2.1.1 太陽能電池基本工作原理 - 10 - 2.1.2理想太陽能電池等效電路 - 11 - 2.1.3非理想太陽能電池等效電路 - 11 - 2.1.4太陽能電池基本參數介紹 - 13 - 2.1.5太陽能電池操作分析 - 18 - 2.2 有機共軛高分子材料特性 - 21 - 2.2.1共軛高分子簡介 - 21 - 2.3 本論文研究理論 - 22 - 2.3.1材料的選擇 - 22 - 2.3.2實驗中的太陽電池結構 - 25 - 第二章 參考文獻 - 26 - 第三章 實驗方法與流程介紹 - 27 - 3.1 ITO基板蝕刻圖樣化與清洗 - 28 - 3.1.1 ITO玻璃切割清洗 - 28 - 3.3 電子傳輸層(ELECTRON TRANSPORT LAYER , ETL) 成膜 - 32 - 3.4 主動層材料成膜 - 34 - 3.5 電洞傳輸層(HOLE TRANSPORT LAYER, HTL)成膜 - 35 - 3.6 熱蒸鍍電極 - 36 - 3.7 元件封裝 - 37 - 3.8 元件量測 - 38 - 第四章 實驗結果與討論 - 40 - 4.1 原子層沉積法應用於反式有機太陽能電池 - 40 - 4.1.1 原子層沉積法機台參數設定 - 41 - 4.1.2 ALD沉積速率 - 42 - 4.2 使用氧化鋅(ZNO)作為反式太陽能電池之電子傳輸層 - 44 - 4.2.1 原子層沉積法定義氧化鋅區域 - 44 - 4.2.2 原子層沉積法沉積不同厚度氧化鋅之電壓電流特性影響 - 47 - 4.3 利用新主動層材料製作之反式太陽能電池 - 49 - 4.3.1 新主動層材料應用於正結構 - 49 - 4.3.2 新主動層材料之成膜與製程方法 - 50 - 4.3.3反式結構太陽能電池之電壓電流曲線 - 52 - 4.4 元件的後處理 - 54 - 4.4.1 Light Soaking Post Annealing對太陽能電池效率之影響 - 54 - 4.4.2 Post Annealing對太陽能電池效率之影響 - 57 - 4.4.3 IPCE - 60 - 第四章 參考文獻 - 61 - 第五章 實驗總結 - 62 - 參考文獻 - 63 -

    [1]. D. M. Chapin, C. S. Fuller, and G. L. Pearson,” A new silicon pn junction photocell for converting solar radiation into electrical power,” J. Appl. Phys. 25, 676 (1954)
    [2]. News-“Tandem organic photovoltaic reaches 10.6% efficiency a world’s first for polymer organic photovoltaic devices”(2012).
    [3]. K. M. Coakley,Wudl and M. D. McGehee,―Conjugated polymer photovoltaic cells,‖ Chem. Mater. 16, 4533 (2004).
    [4]. Harald Hoppe, and Niyazi Serdar Sariciftci,―Organic solar cell: An review,‖J. Mater. Res., Vol. 19, No. 7, Jul 2004
    [5]. C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183(1986)
    [6]. Kyungkon Kim, Jiwen Liu, Manoj A. G. Namboothiry, and David L. Carroll,“Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaic,” Appl. Phys. Lett. 90, 163511 (2007).
    [7]. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. De Leeuw, “ Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, 401, 685 (1999).
    [8]. J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao, and C. L. Wilkins, “Preparation and Characterization of Fulleroid and Methanofullerene Derivatives,” J.Org. Chem. 60, 532 (1995)
    [9]. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. V. Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, T. M. Klapwijk. Nat. Mater. 2, 678 (2003)
    [10]. wikipedia (http://en.wikipedia.org/wiki/Solar_radiation)
    [11]. J. C. Wang, W. T. Weng, M. Y. Tsai, M. K. Lee, S. F. Horng, T. P. Perng, C. C. Kei, C. C. Yu, H. F. Meng, “Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer” Journal of Materials Chemistry
    [12]. E. Guziewicz, I. A. Kowalik, M. Godlewski, K. Kopalko, V. Osinniy et al, “Extremely low temperature growth of ZnO by atomic layer deposition” Journal of Applied Physics
    [13]. Swee-Yong Pung, Kwang-Leong Choy1, Xianghui Hou and Chongxin Shan “Preferential growth of ZnO thin films by the atomic layer deposition technique”, IOPscience
    [14]. Siew-Lay Lim, En-ChenChen , Chun-YuChen, Kok-HawOng, Zhi-KuanChen, Hsin-FeiMeng , “High performanceorganicphotovoltaiccellswithblade-coatedactivelayers ” Solar Energy Materials & Solar Cells

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE