簡易檢索 / 詳目顯示

研究生: 洪銓顥
論文名稱: POM經加馬射線照射後之硬度與電子順磁共振光譜研究
Hardness Evolution and EPR simulation of Post-irradiated polyoxymethylene
指導教授: 李三保
口試委員: 楊聰仁
蔣東堯
洪健龍
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 84
中文關鍵詞: 高分子硬度自由基加馬射線
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子材料在經由gamma-ray照射之後,會使得高分子原有的性質發生變化,像是機械、光、熱、化學性質等等,然而本篇論文將著重於高分子在高溫時,其硬度的變化機制以及自由基的產生。高分子的硬度會隨輻射所產生的缺陷而有所變化,至於自由基的形成主要是因為高能量的gamma-ray打斷了高分子內部的鍵結,所以才導致自由基(free radicals)的產生。
    此實驗是利用鈷-60作為輻射源的加馬射線去照射常見的工程塑膠Polyoxymethylene (POM),並且以輻射後的POM高分子作為研究材料。然而本論文內容分為兩部分,第一部分,探討硬度在不同的退火溫度其硬度隨時間變化,第二部分則是運用Electron Paramagnetic Resonance (EPR)所量測到的光譜,透過WINEPR、SimFornia和WinSim2002等專用軟體,模擬分析所產生的自由基種類及演化。
    根據實驗結果,經過加馬射線照射的POM,在40, 60, 80, 100℃這四種不同的退火溫度下,其硬度都會隨時間有明顯的上升,除此之外,照射劑量的提高會導致硬度下降。然而在高溫中,硬度隨時間的增加是一種零階和一階混合的動力學過程。電子順磁共振光譜的部分,依據我們所摸擬出來的光譜,輻射後的POM主要會產生四種自由基,分別是 ˗OCH2• 和˗OĊHO˗ 以及 ˗CH2O• 還有 HOO• ,但是與硬度不同的地方,在於其光譜會隨時間增加,有顯著的衰退,至於加馬射線劑量的增加則會使光譜強度上升。


    After Co60 gamma-ray irradiation, the polymer materials will change their mechanical, optical, thermal, and chemical properties. Then this thesis focuses on the evolution of hardness and chemical reactions at elevated temperature. The hardness of polymer is controlled by the defect induced by the gamma-ray irradiation, and the irradiated polymer also generates free radicals since the high-energy particles break the chemical bond of the polymer.
    In this experiment, the polyoxymethylene (POM) specimen was irradiated by Co60 gamma-ray. The study is divided into two parts, one is the evolution of hardness during different annealing temperatures, and the other is the Electron Paramagnetic Resonance (EPR) spectra using computer software WINEPR, SimFornia and WinSim2002.
    We found the hardness of irradiated polyoxymethylene increases with annealing time. The hardness reduces when gamma-ray dose increases. The annealing of defects which affect the hardness follows a mixture of zeroth order and first order kinetic processes. The EPR spectra of irradiated POM are possibly attributed to four radicals, which are ˗OCH2• as radical Ra, ˗OĊHO˗ as radical Rb, ˗CH2O• as radical Rc and HOO• as radical Rd, respectively. Electron Paramagnetic Resonance spectra decrease with increasing time and the intensity increases when gamma-ray dose rises.

    Acknowledgments I Abstract III 摘要 V Contents VII 1. Introduction 1 2. Experimental 6 2.1 Specimen preparation 6 2.2 Gamma-ray irradiation 7 2.3 Microhardness measurement 7 2.4 EPR measurement 8 2.5 GPC (Gel permeation chromatography) measurement 8 2.6 DSC (Differential Scanning Calorimeter) measurement 9 2.7 XRD (X-ray Diffraction) measurement 9 2.8 Density measurement 10 3. Results and Discussion 11 3.1 The hardness experiment for POM 11 3.1.1 Vickers hardness test 11 3.1.2 Evolution of hardness of irradiated POM at different annealing temperatures 12 3.1.3 The fitting for the hardness of POM 13 3.1.4 The activation energy and enthalpy of hardness 14 3.1.5 The XRD pattern for POM 16 3.1.6 The effect of gamma-ray irradiation on the density and crystallinity of polyoxymethylene 16 3.2 The EPR experiment for POM 17 3.2.1 Electron paramagnetic resonance (EPR) spectrometer test 17 3.2.2 Analysis for post-irradiated POM 19 3.2.3 The calculation for free radical number 20 3.2.4 The simulations of POM spectra 21 3.2.5 The fitting and activation energy for free radicals decaying 24 4. Conclusions 27 References 29 Appendix : The evaporation rate of methanol 35 List of Tables 37 Figure Captions 49

    1. S. Siengchin, J. Karger-Kocsis, G. C. Psarras, and R. Thomann, "Polyoxymethylene/polyurethane/alumina ternary composites: Structure, mechanical, thermal and dielectric properties," Journal of Applied Polymer Science, Vol. 110, pp. 1613-1623, 2008.
    2. J. Masamoto, "Modern polyacetals," Progress in polymer science, Vol. 18, pp. 1-84, 1993.
    3. A. R. Breeds, S. N. Kukureka, K. Mao, D. Walton, and C. J. Hooke, "WEAR BEHAVIOR OF ACETAL GEAR PAIRS," Wear, Vol. 166, pp. 85-91, 1993.
    4. A. J. Jose and M. Alagar, "Development and characterization of organoclay-filled polyoxymethylene nanocomposites for high performance applications," Polymer Composites, Vol. 32, pp. 1315-1324, 2011.
    5. X. Zhao and L. Ye, "Preparation, Structure, and Property of Polyoxymethylene/Carbon Nanotubes Thermal Conducive Composites," Journal of Polymer Science Part B-Polymer Physics, Vol. 48, pp. 905-912, 2010.
    6. K. J. Penick, L. A. Solchaga, J. A. Berilla, and J. F. Welter, "Performance of polyoxymethylene plastic (POM) as a component of a tissue engineering bioreactor," J Biomed Mater Res A, Vol. 75, pp. 168-74, 2005.
    7. S. Rouif, "Radiation cross-linked plastics: a versatile material solution for packaging, automotive, Electrotechnic and Electronics," Radiation Physics and Chemistry, Vol. 71, pp. 527-530, 2004.
    8. S. Rouif, "Radiation cross-linked polymers: Recent developments and new applications," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 236, pp. 68-72, 2005.
    9. T. Seguchi, T. Yagi, S. Ishikawa, and Y. Sano, "New material synthesis by radiation processing at high temperature - polymer modification with improved irradiation technology," Radiation Physics and Chemistry, Vol. 63, pp. 35-40, 2002.
    10. Y. Ikada, K. Nakamura, S. Ogata, K. Makino, K. Tajima, N. Endoh, et al., "Characterization of ultrahigh molecular weight polyethylene irradiated with gamma-rays and electron beams to high doses," Journal of Polymer Science Part A-Polymer Chemistry, Vol. 37, pp. 159-168, 1999.
    11. J. C. M. Suarez, E. E. D. Monteiro, and E. B. Mano, "Study of the effect of gamma irradiation on polyolefins - low-density polyethylene," Polymer Degradation and Stability, Vol. 75, pp. 143-151, 2002.
    12. K. P. Lu, Y. K. Fu, and S. Lee, "Hardness of Irradiated Hydroxyethyl Methacrylate Copolymer at Elevated Temperatures," Journal of Applied Polymer Science, Vol. 113, pp. 657-661, 2009.
    13. K. P. Lu, S. Lee, and C. P. Cheng, "Hardness of irradiated poly(methyl methacrylate) at elevated temperatures," Journal of Applied Physics, vol. 90, pp. 1745-1749, 2001.
    14. S. H. Yeh, P. Y. Chen, J. Harmon, and S. Lee, "Kinetics of hardness evolution during annealing of gamma-irradiated polycarbonate," Journal of Applied Physics, Vol. 112, 2012.
    15. R. R. Zahran, "Effect of gamma-irradiation on the ultrasonic and structural properties of polyoxymethylene," Materials Letters, Vol. 37, pp. 83-89, 1998.
    16. H. N. Subramanyam and S. V. Subramanyam, "THERMAL-EXPANSION OF IRRADIATED POLYOXYMETHYLENE," European Polymer Journal, Vol. 23, pp. 207-211, 1987.
    17. M. E. Kassem, M. E. Bassiouni, and M. El-Muraikhi, "The effect of gamma-irradiation on the optical properties of polyoxymethylene compacts," Journal of Materials Science-Materials in Electronics, Vol. 13, pp. 717-719, 2002.
    18. R. Lenk, "CHANGES IN EPR SPECTRUM OF FREE RADICAL SPECIES IN GAMMA-IRRADIATED POLYFORMALDEHYDE," Czechoslovak Journal of Physics, Vol. 12, pp. 833-837, 1962.
    19. H. Sasakura, N. Takeuchi, and T. Mizuno, "ELECTRON SPIN RESONANCE OF IRRADIATED POLYOXYMETHYLENE," Journal of the Physical Society of Japan, Vol. 17, p. 572, 1962.
    20. H. Yoshida and B. Ranby, "ELECTRON SPIN RESONANCE STUDIES ON ORIENTED POLYOXYMETHYLENE," Journal of Polymer Science Part A-General Papers, Vol. 3, pp. 2289-2302, 1965.
    21. O. R. Hughes and L. C. Coard, "PRODUCTION OF RADICALS IN POLYOXYMETHYLENE BY ULTRAVIOLET PHOTOLYSIS - AN EPR STUDY," Journal of Polymer Science Part A-1-Polymer Chemistry, Vol. 7, pp. 1861-1872, 1969.
    22. ASTM E384 - 11e1, "Standard Test Method for Knoop and Vickers Hardness of Materials," Annual Book of Standards, Vol. 03.01, 2012.
    23. ASTM C1327 - 08, "Standard Test Method for Vickers Indentation Hardness of Advanced Ceramics," Annual Book of Standards, Vol. 15.01, 2003.
    24. A. Faltermeier, M. Behr, C. Reicheneder, P. Proff, and P. Romer, "Electron-beam irradiation of polymer bracket materials," American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 139, 2011.
    25. P. W. Atkins and J. De Paula, Physical Chemistry, 9th ed. New York: W.H. Freeman, 2010.
    26. J. Mohanraj, J. Morawiec, A. Pawlak, D. C. Barton, A. Galeski, and I. M. Ward, "Orientation of polyoxymethylene by rolling with side constraints," Polymer, Vol. 49, pp. 303-316, 2008.
    27. X. W. Zhao and L. Ye, "Structure and properties of highly oriented polyoxymethylene produced by hot stretching," Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol. 528, pp. 4585-4591, 2011.
    28. G. A. Carazzolo, "Structure of the normal crystal form of polyoxymethylene," Journal of Polymer Science Part A: General Papers, Vol. 1, pp. 1573-1583, 1963.
    29. G. R. Eaton, S. S. Eaton, D. P. Barr, and R. T. Weber, Quantitative EPR. Wien ; New York: Springer, 2010.
    30. E. E. Budzinski and H. C. Box, "ALKOXY RADICALS - DELTA-PROTON HYPERFINE COUPLINGS," Journal of Chemical Physics, Vol. 82, pp. 3487-3490, 1985.
    31. T. J. Baine and E. Sagstuen, "Radiation-induced radical formation in β-glycerophosphate single crystals studied by electron paramagnetic resonance and electron nuclear double resonance spectroscopy: Formation of an allylic-type radical," Radiation research, Vol. 150, pp. 148-158, 1998.
    32. C. C. Lin, L. J. Ming, C. C. Lee, and S. Lee, "EPR kinetics in irradiated syndiotactic polystyrene at elevated temperatures," Polymer, Vol. 49, pp. 3987-3992, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE