簡易檢索 / 詳目顯示

研究生: 高立權
Kao Li-Chuan
論文名稱: 摻雜鑭、鈦對鐵酸鉍薄膜性質的影響
La3+ and Ti4+ doped BiFeO3 thin films prepared by sol-gel process
指導教授: 吳振名
Wu Jenn-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 134
中文關鍵詞: 複鐵式鐵酸鉍摻雜漏電機制
外文關鍵詞: multiferroic, bismuth ferrite, doping, leakage mechanism
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵酸鉍(BiFeO3)是一個複鐵式材料,它同時擁有鐵電特性和鐵磁特性,在元件設計與製程整合上會較有優勢,但是受限於材料本身低的電阻率,使得它在實際的應用方面還有些問題需要克服,本論文是利用摻雜鑭、鈦離子來改變材料本身的電阻率,並將薄膜製成multilayer的形式,嘗試改善薄膜特性。
    本實驗利用化學溶液溶凝膠法(sol-gel)在Pt/TiO2/SiO2/Si(100)基板上,成功鍍製鐵酸鉍薄膜(BiFeO3),並透過摻雜鑭(Lanthanum, La)及鈦(Titanium, Ti)元素,製作BLFO、BFTO和BLFTO薄膜,以及 (BLFO/BFO)3、(BFTO/BFO)3和(BFTO/BLFO)3異質多層薄膜結構,觀察在氧氣氛下不同熱處理溫度的薄膜結構、電性和磁性質方面的影響,並與BFO薄膜相互比較各種不同的性質。
    鈦元素的摻雜使得BFO的微觀形貌較為平坦,因價數高於鐵元素,透過氧氣氛下熱處理,減少了氧空缺的濃度,漏電流性質得到改善;鑭元素的摻雜填補了因為熱處理而揮發的鉍,減少薄膜內的空缺,改變了原子間的鍵能,進而穩定鈣鈦礦結構中的八面體,獲得了較好的殘餘極化量,retention性質在經過10000秒的測試後,retention loss約在百分之十左右,較BFO薄膜的百分之三十八來的優異許多;同時摻雜鑭、鈦元素的BFO薄膜,改善了鐵電特性,降低了漏電流同時也提升了retention性質。而(BFTO/BLFO)3的異質多層薄膜結構,在氧氣氛下500℃熱處理5min可以得到最佳性質,其最大的Pr值達41μC/cm2,而Ec值為400kV/cm。BFO和有摻雜離子的薄膜,其漏電機制均為空間電荷限制傳導(SCLC)。


    目錄 摘要................................................................I 目錄..............................................................III 表目錄..............................................................V 圖目錄.............................................................VI 第一章 序論.........................................................1 1.1簡介.............................................................1 1.2研究動機.........................................................3 第二章 文獻回顧.....................................................5 2.1異質多層鐵電薄膜.................................................5 2.2複鐵式材料簡介...................................................7 2.2.1鐵電性質與結構.................................................7 2.2.2鐵電薄膜的電極材料.............................................9 2.2.3複鐵式材料的種類..............................................11 2.2.4複鐵式材料的磁性..............................................14 2.2.5磁電效應.......................................................15 2.3鐵酸鉍的基本性質................................................17 2.3.1晶體結構......................................................17 2.3.2電性..........................................................18 2.3.3磁性..........................................................19 2.3.4摻雜的特性......................................................20 2.3.5未來發展........................................................21 2.4介電性質.........................................................22 2.4.1極化機制........................................................23 2.4.2介電常數和介電損失.............................................24 2.4.3漏電流機制......................................................26 第三章 實驗流程......................................................30 3-1薄膜製作..........................................................30 3-1.1 基板的製備.....................................................30 3-1.2 前趨物配製....................................................30 3-1.3 薄膜的鍍製....................................................31 3-1.4 薄膜熱處理....................................................32 3-1.5 上電極的製作..................................................33 3-2 薄膜特性量測....................................................33 3-2.1 結構分析.......................................................33 3-2.2微觀結構分析...................................................33 3-2.3 SIMS薄膜成分縱深分析.........................................34 3-3 薄膜電性和磁性量測...............................................34 3-3.1 電滯曲線量测..................................................34 3-3.2 電容對頻率量測................................................35 3-3.3 漏電流量测.....................................................35 3-3.4 retention曲線量測.............................................36 3-3.5 磁性磁滯曲線量測..............................................36 第四章 實驗結果與討論...............................................37 4-1 晶體結構分析....................................................37 4-1.1 不同摻雜離子的BFO薄膜XRD分析...................................37 4-1.2 異質多層結構薄膜XRD分析........................................39 4-2 微觀結構及縱深成份分析...........................................40 4-2.1 SEM圖.........................................................40 4-2.2 異質多層結構薄膜在各溫度下的SIMS圖............................42 4-3 介電特性........................................................43 4-4 漏電流特性......................................................45 4-4.1 不同摻雜離子的BFO薄膜漏電流分析...............................45 4-4.2 不同摻雜離子的BFO薄膜漏電流比較...............................46 4-4.3 異質多層結構薄膜漏電流分析....................................47 4-4.4 不同摻雜離子的BFO薄膜漏電流機制分析...........................48 4-5 鐵電特性........................................................49 4-5.1 不同摻雜離子的BFO薄膜鐵電特性分析.............................49 4-5.2 不同摻雜離子的BFO薄膜鐵電特性比較.............................51 4-5.3 異質多層結構薄膜鐵電特性分析..................................51 4-6 retention.......................................................52 4-7 磁滯特性........................................................52 第五章 結論.........................................................55 第六章 參考文獻.....................................................58 表目錄 表2-1:七大晶系與三十二點群關係......................................69 表2-2:各種單相複鐵式材料............................................70 表2-3:各種異質複鐵式材料與製備方式..................................70 表2-4:絕緣體中之傳導機構............................................71 表2-5:空間電荷傳導機制各區域表示法..................................71 表3-1:起始原料......................................................72 表4-1:漏電流曲線各區域斜率對照表....................................73 圖目錄 圖 1-1: 典型鈣鈦礦結構................................................74 圖 2-1.1: 複合材料性質................................................74 圖 2-1.2: 晶體結構與能帶..............................................75 圖 2-1.3: AO-BO 異質多層薄膜成份分布圖..............................76 圖 2-2.1: 鐵電記憶體的工作原理.........................................77 圖 2-2.2: 反鐵磁在線性金屬-氧-金屬(M1-O-M2)系統中的超交換作用..........77 圖 2.3.1: BiFeO3以六方晶表示之晶體結構圖..............................78 圖 2.3.2: BiFeO3菱形晶與正方晶的原子排列示意圖........................78 圖 2.3.3: BiFeO3以六方晶表示之磁性自旋結構圖...........................79 圖 2-4.1: 頻率變化對極化機構的影響圖..................................79 圖 2-4.2: 實際電容器的I-V相圖.......................................80 圖 2-4.3: The barrier-limited 機制...................................80 圖 2-4.4: Bulk limited 傳導機構......................................81 圖 2-4.5: 空間電荷傳導機制的漏電流曲線.................................81 圖 3-1.1: BFO溶液製作流程圖................................................82 圖 3-1.2: BLFO溶液製作流程圖...........................................83 圖 3-1.3:BFTO溶液製作流程圖.........................................84 圖 3-1.4: BLFTO溶液製作流程圖...........................................85 圖 3-1.5: (BLFO/BFO)3異質多層結構圖..................................86 圖 3-1.6: (BFTO/BFO)3異質多層結構圖..................................86 圖 3-1.7: (BFTO/BLFO)3異質多層結構圖.................................87 圖 3-3.1: RT-66A量測系統P-E量測波形................................87 圖 3-3.2: HP4140B輸入電壓形式與各項參數表示.........................87 圖 3-3.3: retention量测波型示意圖......................................88 圖 3-3.4: VSM量测系統示意圖.............................................88 圖 4-1.1: Bi1.05FeO3不同溫度熱處理XRD結果.............................89 圖 4-1.2: Bi0.95La0.05FeO3不同溫度熱處理XRD結果.........................89 圖 4-1.3: BiFe0.98Ti0.02O3不同溫度熱處理XRD結果.........................90 圖 4-1.4: Bi0.95La0.05Fe0.98Ti0.02O3不同溫度熱處理XRD結果...................90 圖 4-1.5: (BLFO/BFO)3不同溫度熱處理XRD結果..........................91 圖 4-1.6: (BFTO/BFO)3不同溫度熱處理XRD結果..........................91 圖 4-1.7: (BFTO/BLFO)3同溫度熱處理XRD結果...........................92 圖 4-2.1: Bi1.05FeO3不同溫度熱處理SEM照片與500oC熱處理之截面..........93 圖 4-2.2: Bi0.95La0.05FeO3不同溫度熱處理SEM照片.........................94 圖 4-2.3: Bi0.95La0.05FeO3 在600oC熱處理之EDX圖.........................95 圖 4-2.4: BiFe0.98Ti0.02O3不同溫度熱處理SEM照片.........................96 圖 4-2.5: Bi0.95La0.05Fe0.98Ti0.02O3不同溫度熱處理SEM照片...................97 圖 4-2.6: (BLFO/BFO)3不同溫度熱處理SEM照片..........................98 圖 4-2.7: (BFTO/BFO)3不同溫度熱處理SEM照片..........................99 圖 4-2.8: (BFTO/BLFO)3不同溫度熱處理SEM照片........................100 圖 4-2.9: (BLFO/BFO)3在500℃一次熱處理SIMS縱深成份分析.............101 圖 4-2.10: (BLFO/BFO)3在550℃一次熱處理SIMS縱深成份分析............101 圖 4-2.11: (BLFO/BFO)3在600℃一次熱處理SIMS縱深成份分析............102 圖 4-2.12: (BFTO/BFO)3在500℃一次熱處理SIMS縱深成份分析............102 圖 4-2.13: (BFTO/BFO)3在550℃一次熱處理SIMS縱深成份分析............103 圖 4-2.14: (BFTO/BFO)3在600℃一次熱處理SIMS縱深成份分析............103 圖 4-2.15: (BFTO/BLFO)3在500℃一次熱處理SIMS縱深成份分析...........104 圖 4-2.16: (BFTO/BLFO)3在550℃一次熱處理SIMS縱深成份分析...........104 圖 4-2.17: (BFTO/BLFO)3在600℃一次熱處理SIMS縱深成份分析...........105 圖 4-3.1: Bi1.05FeO3在不同熱處理溫度之介電常數與損失對頻率圖..........106 圖 4-3.2: Bi0.95La0.05FeO3在不同熱處理溫度之介電常數與損失對頻率圖......106 圖 4-3.3: BiFe0.98Ti0.02O3在不同熱處理溫度之介電常數與損失對頻率圖......107 圖 4-3.4: Bi0.95La0.05Fe0.98Ti0.02O3在不同熱處理溫度之介電常數與損失對頻率.....107 圖 4-3.5: (BLFO/BFO)3在不同熱處理溫度之介電常數與損失對頻率圖.......108 圖 4-3.6: (BFTO/BFO)3在不同熱處理溫度之介電常數與損失對頻率圖.......108 圖 4-3.7: (BFTO/BLFO)3在不同熱處理溫度之介電常數與損失對頻率圖......109 圖 4-4.1: Bi1.05FeO3在不同溫度熱處理之J-E曲線圖......................110 圖 4-4.2: Bi0.95La0.05FeO3在不同溫度熱處理之J-E曲線圖..................110 圖 4-4.3: BiFe0.98Ti0.02O3在不同溫度熱處理之J-E曲線圖..................111 圖 4-4.4: Bi0.95La0.05Fe0.98Ti0.02O3在500oC熱處理之J-E曲線圖...............111 圖 4-4.5: 不同離子摻雜的BFO薄膜在500oC熱處理之J-E曲線圖...........112 圖 4-4.6: (BLFO/BFO)3在不同溫度熱處理之J-E曲線圖...................112 圖 4-4.7: (BFTO/BFO)3在不同溫度熱處理之J-E曲線圖...................113 圖 4-4.8: (BFTO/BLFO)3在不同溫度熱處理之J-E曲線圖..................113 圖 4-4.9: 不同異質多層與BFO薄膜在500oC熱處理之J-E曲線圖.............114 圖 4-4.10: Bi1.05FeO3之漏電流曲線斜率圖...............................114 圖 4-4.11: 不同離子摻雜的BFO薄膜之漏電流曲線斜率圖.................115 圖 4-4.12: 不同異質多層與BFO薄膜之漏電流曲線斜率圖.................115 圖 4-5.1: Bi1.05FeO3在500oC熱處理之P-E曲線圖.........................116 圖 4-5.2: Bi0.95La0.05FeO3在500oC熱處理之P-E曲線圖.....................116 圖 4-5.3: BiFe0.98Ti0.02O3在500oC熱處理之P-E曲線圖.....................117 圖 4-5.4: Bi0.95La0.05Fe0.98Ti0.02O3在500oC熱處理之P-E曲線圖...............117 圖 4-5.5: 不同離子摻雜的BFO薄膜在500oC熱處理之P-E曲線圖...........118 圖 4-5.6: (BLFO/BFO)3在500oC熱處理之P-E曲線圖......................118 圖 4-5.7: (BFTO/BFO)3在500oC熱處理之P-E曲線圖......................119 圖 4-5.8: (BFTO/BLFO)3在500oC熱處理之P-E曲線圖.....................119 圖 4-5.9: 不同異質多層與BFO薄膜在500oC熱處理之P-E曲線圖...........120 圖 4-6.1: 不同離子摻雜的BFO薄膜之retention圖......................121 圖 4-6.2: 不同異質多層與BFO薄膜之retention圖......................121 圖 4-7.1: Bi1.05FeO3薄膜在500℃熱處理的M-H曲線.......................122 圖 4-7.2: Bi1.05FeO3薄膜在600℃熱處理的M-H曲線.......................122 圖 4-7.3: Bi1.05La0.05FeO3薄膜在500℃熱處理的M-H曲線...................123 圖 4-7.4: BiFe0.98Ti0.02O3薄膜在500℃熱處理的M-H曲線...................123 圖 4-7.5: Bi0.95La0.05Fe0.98Ti0.02O3薄膜在500℃熱處理的M-H曲線.............124 圖 4-7.6: (BLFO/BFO)3在500℃熱處理之M-H曲線........................124 圖 4-7.7: (BFTO/BFO)3在500℃熱處理之M-H曲線........................125 圖 4-7.8: (BFTO/BLFO)3在500℃熱處理之M-H曲線.......................125

    第六章 參考文獻
    1. J. R. Teague, R. G. Erson, and W. J. James, “Dielectric hysteresis in single crystal BiFeO3”, Solid State Commun. 13, 1073 (1970).
    2. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B.Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare. N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science. 299, 1719 (2003)
    3. H. Zheng, J. Wang, S. E. Lofland, Z. M, L. Mohaddes-Ardabili, T.Zhao, L. Salamanca-Rib, S. R. Shinde, S. B. Ogale, F. Bai, D.Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R.Ramesh, “Multiferroic BaTiO3-CoFe2O4 nanostructure”, Science. 303, 66, (2004).
    4. J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q.Zhou, G. H. Wang, and J. M. Liu, “Magnetoelectric
    CoFe2O4-Pb(Zr,Ti)O3 composite thin films derived by a sol-gel
    process”, Appl. Phys. Lett. 86, 122501 (2005).
    5. J. Synowczynski, L. C. Sengupta and L. H. Chiu, “The
    effect of annealing temperature on the formation of SrBi2Ta2O9 (SBT) thin films”, Int. Ferroelectrics. 22, 341 (1998).
    6. H. J. Hwang, M. Yasuoka, M. Sando, M. Toriyama and K.
    Niihara, “Fabrication, sinterability, and mechanical properties of lead zirconate titanate/silver composites”, J. Am. Ceram. Soc. 82, 9, 2417 (1999).
    7. Y. Ohya, T. Ito and Y. Takahashi, “Dielectric properties
    of multilayered ferroelectric thin films fabricated by sol-gel method”,Jpn. J. Appl. Phys. 33, 5272 (1994).
    8. D. A. Barrow, T. E. Petroff, R. P. Tandon and M. Sayer,
    “Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process”, J. Appl. Phys. 81, 876 (1997).
    9. J. H. Park, D. H. Kang and K. H. Yoon, “Effects of heating
    profiles on the orientation and dielectric properties of
    0.5Pb(Mg1/3Nb2/3)O3-0.5PbTiO3 thin films by chemical solution
    deposition”, J. Am. Ceram. Soc. 82, 8, 2116 (1999).
    10. V. Bornand and S. T. Mckinstry, J, “Structural and electrical characterization of heteroepitaxial PbYbNb2O3–PbTiO3 thin films”, J. Appl phys. 87, 3958 (2000).
    11. J. Ryu, S. Priya, K. Uchino AND H. E. Kim, “Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials”, J. Electroceramics 8,107 (2002).
    12. Z. Wang and S. Oda, “Electrical properties of SrTiO3/BaTiO3 strained superlattice films”, J. Electrochem. Soc. 147, 4615 (2000).
    13. A. Srivastava, D. Kumar, R. K. Singh, H. Venkataraman and W. R. Eisenstadt, “Improvement in electrical and dielectric behavior of BST thin films by Ag doping”, Phys. Rev. B. 61, 7305 (2000).
    14. R. C. Cammarata, in: “Nanomaterials: Synthesis, Properties and Applications” Ch. 6, edited by A. S. Edelstein and R. C. Cammarata (IOP Publishing, Philadelphia, 1998) p.113.
    15. K. P. Jayadevan, T. Y. Tseng, J, “Review Composite and
    multilayer ferroelectric thin films: processing, properties and applications”, Mater. Sci. 13, 439 (2002).
    16. C.P.D. Araujo, J.F. Scott, G.W. Taylor: Ferroelectric Thin Films: Systhesis and Basic Properties (Gordon and Breach, Australia) 193, 1996
    17. S. Wolf and R. N. Tauber, “Silicon processing for the VLSI era,” in Process Technology. Sunset Beach, CA: Lattice Press, 384, 1, (1986)
    18. E. A. Kneer, D. P. Birnie, R. D. Schrimpf, J. C. Podlesny and G. Teowee,” Investigation of surface roughness and hillock formation on platinized substrates used for Pt/PZT/Pt capacitor fabrication”Integrated. Ferroelectrics. 7,61 (1995) .
    19. K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish and R. G. Elliman ” Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”, J. Appl. Phys., 75, 232 (1994).
    20. K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish and R. G. Elliman ” Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”, J. Appl. Phys., 75, 232 (1994).
    21. E. Ascher, H. Rieder, H. Schmid, and H. Stössel,” Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I”, J. Appl. Phys. 37 1404 (1966)
    22. G. A. Smolensky, A. I. Agranovskaya, and V. A. Isupov,“New Ferroelectrics of Complex Compound” Sov. Phys.—Solid State 1 149 (1959)
    23. G. A. Smolensky, V. A. Isupov, N. N. Krainik, and A. I. Agranovskaya, “Concerning the Coexistance of the Ferroelectric and Ferrimagnetic States”Isv. Akad. Nauk SSSR, Ser Fiz. 25 1333 (1961)
    24. W. Brixel, J. P. Rivera, A. Steiner, and H. Schmid, “Magnetic Filed Induced Magnetoelectric Effect in the
    Perovskite Pb2CoWo6 and Pb2FeTaO6” Ferroelectrics 79 201 (1988)
    25. D. N. Astrov, B. I. Alshin, “Spontaneous Magnetoelectric Effect”Sov. Phys.—JETP 28 1123 (1969)
    26. D. I. Khomskii, “Magnetism and Ferroelectricity: why do they so seldom coexist?” Bull. Am. Phys. Soc. C21.002 (2001)
    27. Nicola A. Hill,“Density functional studies of multiferroic magnetoelectrics”, Annu. Rev. Mater. Res. 32 1-37 (2002)
    28. R. E. Cohen, “Origin of ferroelectricity in perovskite oxides”, Nature 358 136-138 (1992)
    29. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, “Magnetocapacitance effect in multiferroic BiMnO3”, Phys. Rev. B 67 180401(R) (2003)
    30. R. Seshadri and Nicola A. Hill, “Visualizing the Role of Bi 6s "Lone Pairs" in the Off-Center Distortion in Ferromagnetic BiMnO3”,Chem. Mater. 13 2892-2899(2001)
    31. G. T. Rado, V. J. Folen, “Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains”,Phys. Rev. Lett. 7, 310 (1961).
    32. J. Van den Boomgaard, A. M. J. G. van Run, and J.van Suchtelen, “Magnetoelectric effect in sputtered composites”, Ferroelectrics 14,727 (1976)
    33. M. I. Bichurin, V. M. Petrov, O. V. Ryabkov, and S. V. Averkin, “Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures”, Phys.
    Rev. B. 72, 060408 (2005).
    34. Ascher E. Schmid H and Tar D, “Dielectric properties of boracites and evidence for ferroelectricity”, Solid State Commun. 2, 45 (1964).
    35. Schmid H, Rieder H and Ascher E, “Magnetic susceptibilities of some 3d transition metal boracites”, Soild State Commun. 3, 327 (1965).
    36. Venevtsev Y N, Gagulin V and Zhitomirsky I D, “Material Science Aspects of Seignette-Magnetism Problem”, Ferroelectrics 73, 221 (1987).
    37. Venevtsev Y N, Gagulin V and Zhitomirsky I D, “Material Science aspects of Seignette-Magnetism Problem”, Ferroelectrics 73, 221 (1987).
    38. Manfred Fiebig, “Revival of the magnetoelectric effect” J. Phys. D: Appl. Phys. 38, R123 (2005)
    39. V. J. Folen, G, T. Rado, and E. W. Stalder, “Anisotropy of the magnetoelectric effect in Cr2O3”, Phys. Rev. Lett. 6, 607 (1961).
    40. G. T. Rado, V. J. Folen,“Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains”, Phys. Rev. Lett. 7, 310 (1961).
    41. J. Van den Boomgaard, D. R. Terrell, and R. A. J. Born, J. Mater. Sci. 9 1705 (1974)
    42. J. Van den Boomgaard, A. M. J. G. van Run, and J.van Suchtelen, “Magnetoelectric effect in sputtered composites”, Ferroelectrics 14,727 (1976)
    43. J. Van den Boomgaard and R. A. J. Born,“A sintered
    magnetoelectric composite material BaTiO3-Ni(Co,Mn)Fe2O4”, J.Mater. Sci. 13, 1538 (1978).
    44. C. W. Nan, “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases”, Phys. Rev. B 50, 6082 (1994).
    45. C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson and W. J James,” The atomic structure of BiFeO3”, Solid State Commun. 7, 701 (1969)
    46. B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li,
    V. I. Belotelov, A. K. Zvezdin, and D. Viehland,
    “Magnetic-field-induced phase transition in BiFeO3
    observed by high-field electron spin order”, Phys. Rev.
    B 69, 064114 (2004).
    47. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L.
    MacManus-Driscoll, “Greatly reduced leakage current and
    conduction mechanism in aliovalent-ion-doped BiFeO3”,
    Appl. Phys. Lett. 86, 062903 (2005).
    48. T. Fujii, S. Jinzenji, Y. Asahara, A. Kajima, and T. Shinjo,
    “Magnetic properties of BiFeO3-BaTiO3 and BiFeO3-PbTi(Zr)O3
    glassy sputtered films”, J. Appl. Phys. 64, 5434 (1988).
    49. A. Kajima, T. Kaneda, H. Ito, T. Fujii, I. Qkamoto, “Film
    structure and magnetic properties of ferromagnetic
    amorphous Bi2O3-Fe2O3-PbTiO3 films prepared by rf-reactive
    sputtering”, J. Appl. Phys. 70, 3760 (1991).
    50. I. Sonowska, M. Loewenhaupt, W. I. F. Davie and R. M.
    Ibberson,“Investigation of the unusual magnetic spiral
    arrangement in BiFeO3”, Physica B, 180&181, 117 (1992).
    51. I. Sonowska, W. Schafer, W. Kockelmann, K. H. Andersen, and
    I. O. Troyanchuk, “Crystal structure and spiralmagnetic
    ordering of BiFeO3 doped with manganese”, Appl. Phys. A:
    Mater. Sci. Process. 74, S1040 (2002).
    52. J. K. Kim, S. S. Kim, W. J. Kim, A. S. Bhalla and R. Guo,
    Appl. Phys. Lett. 88,132901 (2006)
    53. S. K. Singh, H. Ishiwara, K. Maruyama ”Room temperature
    ferroelectric properties of Mn-substituted BiFeO3 thin
    films deposited on Pt electrodes using chemical solution
    deposition“ Appl. Phys Lett. 88 262908 (2006)
    54. Fujitsu Microelectronics America, Inc., Sunnyvale, CA,
    Press Release, 2 August (2006)
    http://www.fujitsu.com/ca/en/news/pr/fma_20060802.html.
    55. B. H. Park, S. J. Hyun, S. D. Bu, and T. W. Noh,” Differences
    in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12“ Appl.
    Phys. Lett. 74,1907 (1999)
    56. C. Y. Yau, R. Palan, K. Tran, and R. C. Buchanana "Mechanism
    of polarization enhancement in La-doped Bi4Ti3O12
    films" .Appl. Phys. Lett. 86, 032907 (2005)
    57. J.wang W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire,
    J. F. Scott, and N.D. Mathur, Science 307, 1203a 2005 .
    58. H.Hu, S.B.Krupanidhi, “current voltage chcracteristics of
    ultrafine grained ferroelectric Pb(Zr,Ti)O3 thin films”J.
    Mater. Res., 9, 6, 1994
    59. W. C. Tsai, and T. Y. Tseng, “Structural and Electrical
    Properties of Cerium Dioxide Films Grown by RF Magnetron
    Sputtering” Journal of Material Science: Materials in
    Electronics, 8, 313-320(1997)
    60. H. Tanaka and T. Kawai, Solid State Commun. “Enhancement
    of magnetoresistance in spin frustrated (La,Sr)MnO3/LaFeO3
    artificial lattices”112 (1999), p. 201.
    61.陳昱丞,“異質多層鋯鈦酸鉛/白金薄膜與其電性”,清華大學,
    碩士論文,(2001)
    62.李奕賢, “鐵酸鉍複鐵式薄膜之晶體成長與分析”,清華大學,
    博士論文,(2005)
    63.張恭銘, “添加鑭及鉛含量對異質多層鐵電薄膜的影響”,清華
    大學,碩士論文,(2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE