研究生: |
高立權 Kao Li-Chuan |
---|---|
論文名稱: |
摻雜鑭、鈦對鐵酸鉍薄膜性質的影響 La3+ and Ti4+ doped BiFeO3 thin films prepared by sol-gel process |
指導教授: |
吳振名
Wu Jenn-Ming |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 134 |
中文關鍵詞: | 複鐵式 、鐵酸鉍 、摻雜 、漏電機制 |
外文關鍵詞: | multiferroic, bismuth ferrite, doping, leakage mechanism |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵酸鉍(BiFeO3)是一個複鐵式材料,它同時擁有鐵電特性和鐵磁特性,在元件設計與製程整合上會較有優勢,但是受限於材料本身低的電阻率,使得它在實際的應用方面還有些問題需要克服,本論文是利用摻雜鑭、鈦離子來改變材料本身的電阻率,並將薄膜製成multilayer的形式,嘗試改善薄膜特性。
本實驗利用化學溶液溶凝膠法(sol-gel)在Pt/TiO2/SiO2/Si(100)基板上,成功鍍製鐵酸鉍薄膜(BiFeO3),並透過摻雜鑭(Lanthanum, La)及鈦(Titanium, Ti)元素,製作BLFO、BFTO和BLFTO薄膜,以及 (BLFO/BFO)3、(BFTO/BFO)3和(BFTO/BLFO)3異質多層薄膜結構,觀察在氧氣氛下不同熱處理溫度的薄膜結構、電性和磁性質方面的影響,並與BFO薄膜相互比較各種不同的性質。
鈦元素的摻雜使得BFO的微觀形貌較為平坦,因價數高於鐵元素,透過氧氣氛下熱處理,減少了氧空缺的濃度,漏電流性質得到改善;鑭元素的摻雜填補了因為熱處理而揮發的鉍,減少薄膜內的空缺,改變了原子間的鍵能,進而穩定鈣鈦礦結構中的八面體,獲得了較好的殘餘極化量,retention性質在經過10000秒的測試後,retention loss約在百分之十左右,較BFO薄膜的百分之三十八來的優異許多;同時摻雜鑭、鈦元素的BFO薄膜,改善了鐵電特性,降低了漏電流同時也提升了retention性質。而(BFTO/BLFO)3的異質多層薄膜結構,在氧氣氛下500℃熱處理5min可以得到最佳性質,其最大的Pr值達41μC/cm2,而Ec值為400kV/cm。BFO和有摻雜離子的薄膜,其漏電機制均為空間電荷限制傳導(SCLC)。
第六章 參考文獻
1. J. R. Teague, R. G. Erson, and W. J. James, “Dielectric hysteresis in single crystal BiFeO3”, Solid State Commun. 13, 1073 (1970).
2. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B.Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare. N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science. 299, 1719 (2003)
3. H. Zheng, J. Wang, S. E. Lofland, Z. M, L. Mohaddes-Ardabili, T.Zhao, L. Salamanca-Rib, S. R. Shinde, S. B. Ogale, F. Bai, D.Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R.Ramesh, “Multiferroic BaTiO3-CoFe2O4 nanostructure”, Science. 303, 66, (2004).
4. J. G. Wan, X. W. Wang, Y. J. Wu, M. Zeng, Y. Wang, H. Jiang, W. Q.Zhou, G. H. Wang, and J. M. Liu, “Magnetoelectric
CoFe2O4-Pb(Zr,Ti)O3 composite thin films derived by a sol-gel
process”, Appl. Phys. Lett. 86, 122501 (2005).
5. J. Synowczynski, L. C. Sengupta and L. H. Chiu, “The
effect of annealing temperature on the formation of SrBi2Ta2O9 (SBT) thin films”, Int. Ferroelectrics. 22, 341 (1998).
6. H. J. Hwang, M. Yasuoka, M. Sando, M. Toriyama and K.
Niihara, “Fabrication, sinterability, and mechanical properties of lead zirconate titanate/silver composites”, J. Am. Ceram. Soc. 82, 9, 2417 (1999).
7. Y. Ohya, T. Ito and Y. Takahashi, “Dielectric properties
of multilayered ferroelectric thin films fabricated by sol-gel method”,Jpn. J. Appl. Phys. 33, 5272 (1994).
8. D. A. Barrow, T. E. Petroff, R. P. Tandon and M. Sayer,
“Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process”, J. Appl. Phys. 81, 876 (1997).
9. J. H. Park, D. H. Kang and K. H. Yoon, “Effects of heating
profiles on the orientation and dielectric properties of
0.5Pb(Mg1/3Nb2/3)O3-0.5PbTiO3 thin films by chemical solution
deposition”, J. Am. Ceram. Soc. 82, 8, 2116 (1999).
10. V. Bornand and S. T. Mckinstry, J, “Structural and electrical characterization of heteroepitaxial PbYbNb2O3–PbTiO3 thin films”, J. Appl phys. 87, 3958 (2000).
11. J. Ryu, S. Priya, K. Uchino AND H. E. Kim, “Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials”, J. Electroceramics 8,107 (2002).
12. Z. Wang and S. Oda, “Electrical properties of SrTiO3/BaTiO3 strained superlattice films”, J. Electrochem. Soc. 147, 4615 (2000).
13. A. Srivastava, D. Kumar, R. K. Singh, H. Venkataraman and W. R. Eisenstadt, “Improvement in electrical and dielectric behavior of BST thin films by Ag doping”, Phys. Rev. B. 61, 7305 (2000).
14. R. C. Cammarata, in: “Nanomaterials: Synthesis, Properties and Applications” Ch. 6, edited by A. S. Edelstein and R. C. Cammarata (IOP Publishing, Philadelphia, 1998) p.113.
15. K. P. Jayadevan, T. Y. Tseng, J, “Review Composite and
multilayer ferroelectric thin films: processing, properties and applications”, Mater. Sci. 13, 439 (2002).
16. C.P.D. Araujo, J.F. Scott, G.W. Taylor: Ferroelectric Thin Films: Systhesis and Basic Properties (Gordon and Breach, Australia) 193, 1996
17. S. Wolf and R. N. Tauber, “Silicon processing for the VLSI era,” in Process Technology. Sunset Beach, CA: Lattice Press, 384, 1, (1986)
18. E. A. Kneer, D. P. Birnie, R. D. Schrimpf, J. C. Podlesny and G. Teowee,” Investigation of surface roughness and hillock formation on platinized substrates used for Pt/PZT/Pt capacitor fabrication”Integrated. Ferroelectrics. 7,61 (1995) .
19. K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish and R. G. Elliman ” Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”, J. Appl. Phys., 75, 232 (1994).
20. K. Sreenivas, I. Reaney, T. Maeder, N. Setter, C. Jagadish and R. G. Elliman ” Investigation of Pt/Ti bilayer metallization on silicon for ferroelectric thin film integration”, J. Appl. Phys., 75, 232 (1994).
21. E. Ascher, H. Rieder, H. Schmid, and H. Stössel,” Some Properties of Ferromagnetoelectric Nickel-Iodine Boracite, Ni3B7O13I”, J. Appl. Phys. 37 1404 (1966)
22. G. A. Smolensky, A. I. Agranovskaya, and V. A. Isupov,“New Ferroelectrics of Complex Compound” Sov. Phys.—Solid State 1 149 (1959)
23. G. A. Smolensky, V. A. Isupov, N. N. Krainik, and A. I. Agranovskaya, “Concerning the Coexistance of the Ferroelectric and Ferrimagnetic States”Isv. Akad. Nauk SSSR, Ser Fiz. 25 1333 (1961)
24. W. Brixel, J. P. Rivera, A. Steiner, and H. Schmid, “Magnetic Filed Induced Magnetoelectric Effect in the
Perovskite Pb2CoWo6 and Pb2FeTaO6” Ferroelectrics 79 201 (1988)
25. D. N. Astrov, B. I. Alshin, “Spontaneous Magnetoelectric Effect”Sov. Phys.—JETP 28 1123 (1969)
26. D. I. Khomskii, “Magnetism and Ferroelectricity: why do they so seldom coexist?” Bull. Am. Phys. Soc. C21.002 (2001)
27. Nicola A. Hill,“Density functional studies of multiferroic magnetoelectrics”, Annu. Rev. Mater. Res. 32 1-37 (2002)
28. R. E. Cohen, “Origin of ferroelectricity in perovskite oxides”, Nature 358 136-138 (1992)
29. T. Kimura, S. Kawamoto, I. Yamada, M. Azuma, M. Takano, and Y. Tokura, “Magnetocapacitance effect in multiferroic BiMnO3”, Phys. Rev. B 67 180401(R) (2003)
30. R. Seshadri and Nicola A. Hill, “Visualizing the Role of Bi 6s "Lone Pairs" in the Off-Center Distortion in Ferromagnetic BiMnO3”,Chem. Mater. 13 2892-2899(2001)
31. G. T. Rado, V. J. Folen, “Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains”,Phys. Rev. Lett. 7, 310 (1961).
32. J. Van den Boomgaard, A. M. J. G. van Run, and J.van Suchtelen, “Magnetoelectric effect in sputtered composites”, Ferroelectrics 14,727 (1976)
33. M. I. Bichurin, V. M. Petrov, O. V. Ryabkov, and S. V. Averkin, “Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures”, Phys.
Rev. B. 72, 060408 (2005).
34. Ascher E. Schmid H and Tar D, “Dielectric properties of boracites and evidence for ferroelectricity”, Solid State Commun. 2, 45 (1964).
35. Schmid H, Rieder H and Ascher E, “Magnetic susceptibilities of some 3d transition metal boracites”, Soild State Commun. 3, 327 (1965).
36. Venevtsev Y N, Gagulin V and Zhitomirsky I D, “Material Science Aspects of Seignette-Magnetism Problem”, Ferroelectrics 73, 221 (1987).
37. Venevtsev Y N, Gagulin V and Zhitomirsky I D, “Material Science aspects of Seignette-Magnetism Problem”, Ferroelectrics 73, 221 (1987).
38. Manfred Fiebig, “Revival of the magnetoelectric effect” J. Phys. D: Appl. Phys. 38, R123 (2005)
39. V. J. Folen, G, T. Rado, and E. W. Stalder, “Anisotropy of the magnetoelectric effect in Cr2O3”, Phys. Rev. Lett. 6, 607 (1961).
40. G. T. Rado, V. J. Folen,“Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains”, Phys. Rev. Lett. 7, 310 (1961).
41. J. Van den Boomgaard, D. R. Terrell, and R. A. J. Born, J. Mater. Sci. 9 1705 (1974)
42. J. Van den Boomgaard, A. M. J. G. van Run, and J.van Suchtelen, “Magnetoelectric effect in sputtered composites”, Ferroelectrics 14,727 (1976)
43. J. Van den Boomgaard and R. A. J. Born,“A sintered
magnetoelectric composite material BaTiO3-Ni(Co,Mn)Fe2O4”, J.Mater. Sci. 13, 1538 (1978).
44. C. W. Nan, “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases”, Phys. Rev. B 50, 6082 (1994).
45. C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson and W. J James,” The atomic structure of BiFeO3”, Solid State Commun. 7, 701 (1969)
46. B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li,
V. I. Belotelov, A. K. Zvezdin, and D. Viehland,
“Magnetic-field-induced phase transition in BiFeO3
observed by high-field electron spin order”, Phys. Rev.
B 69, 064114 (2004).
47. X. Qi, J. Dho, R. Tomov, M. G. Blamire, and J. L.
MacManus-Driscoll, “Greatly reduced leakage current and
conduction mechanism in aliovalent-ion-doped BiFeO3”,
Appl. Phys. Lett. 86, 062903 (2005).
48. T. Fujii, S. Jinzenji, Y. Asahara, A. Kajima, and T. Shinjo,
“Magnetic properties of BiFeO3-BaTiO3 and BiFeO3-PbTi(Zr)O3
glassy sputtered films”, J. Appl. Phys. 64, 5434 (1988).
49. A. Kajima, T. Kaneda, H. Ito, T. Fujii, I. Qkamoto, “Film
structure and magnetic properties of ferromagnetic
amorphous Bi2O3-Fe2O3-PbTiO3 films prepared by rf-reactive
sputtering”, J. Appl. Phys. 70, 3760 (1991).
50. I. Sonowska, M. Loewenhaupt, W. I. F. Davie and R. M.
Ibberson,“Investigation of the unusual magnetic spiral
arrangement in BiFeO3”, Physica B, 180&181, 117 (1992).
51. I. Sonowska, W. Schafer, W. Kockelmann, K. H. Andersen, and
I. O. Troyanchuk, “Crystal structure and spiralmagnetic
ordering of BiFeO3 doped with manganese”, Appl. Phys. A:
Mater. Sci. Process. 74, S1040 (2002).
52. J. K. Kim, S. S. Kim, W. J. Kim, A. S. Bhalla and R. Guo,
Appl. Phys. Lett. 88,132901 (2006)
53. S. K. Singh, H. Ishiwara, K. Maruyama ”Room temperature
ferroelectric properties of Mn-substituted BiFeO3 thin
films deposited on Pt electrodes using chemical solution
deposition“ Appl. Phys Lett. 88 262908 (2006)
54. Fujitsu Microelectronics America, Inc., Sunnyvale, CA,
Press Release, 2 August (2006)
http://www.fujitsu.com/ca/en/news/pr/fma_20060802.html.
55. B. H. Park, S. J. Hyun, S. D. Bu, and T. W. Noh,” Differences
in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12“ Appl.
Phys. Lett. 74,1907 (1999)
56. C. Y. Yau, R. Palan, K. Tran, and R. C. Buchanana "Mechanism
of polarization enhancement in La-doped Bi4Ti3O12
films" .Appl. Phys. Lett. 86, 032907 (2005)
57. J.wang W. Eerenstein, F. D. Morrison, J. Dho, M. G. Blamire,
J. F. Scott, and N.D. Mathur, Science 307, 1203a 2005 .
58. H.Hu, S.B.Krupanidhi, “current voltage chcracteristics of
ultrafine grained ferroelectric Pb(Zr,Ti)O3 thin films”J.
Mater. Res., 9, 6, 1994
59. W. C. Tsai, and T. Y. Tseng, “Structural and Electrical
Properties of Cerium Dioxide Films Grown by RF Magnetron
Sputtering” Journal of Material Science: Materials in
Electronics, 8, 313-320(1997)
60. H. Tanaka and T. Kawai, Solid State Commun. “Enhancement
of magnetoresistance in spin frustrated (La,Sr)MnO3/LaFeO3
artificial lattices”112 (1999), p. 201.
61.陳昱丞,“異質多層鋯鈦酸鉛/白金薄膜與其電性”,清華大學,
碩士論文,(2001)
62.李奕賢, “鐵酸鉍複鐵式薄膜之晶體成長與分析”,清華大學,
博士論文,(2005)
63.張恭銘, “添加鑭及鉛含量對異質多層鐵電薄膜的影響”,清華
大學,碩士論文,(2002)