研究生: |
陳小芳 Siow-Fang Chen |
---|---|
論文名稱: |
巨磁阻結構中感應磁化之理論研究 The induced magnetization in the GMR sandwich structure |
指導教授: |
牟中瑜
Chung-Yu Mou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 巨磁阻 、量子阱 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們探討在巨磁阻結構裡中間層感應磁化的現象。在此,主要討論的是當兩層鐵磁層的磁化方向是平行時,同時並引入一交換耦和常數J於中間層,推導出中間層感應磁化量所遵循的自洽方程式。基於此自洽方程式,中間層的感應磁化量強度即可被決定,同時此感應磁化量也會影響兩層鐵磁層間的交換耦合能。我們發現感應磁化量會隨著中間層厚度變化而呈振盪的行為,其振盪的行為有一定的周期。隨著中間層厚度增加時,感應磁化量會急遽衰減至零,因此我們定義了一個有效衰減常數 ,經由改變系統的參數值來討論衰減常數的變化。
We investigate the induced magnetization of the spacer layer in
the magnetic quantum well of the GMR structure. Only parallel
arrangements of the magnetization are considered. By assuming a
non-vanishing exchange coupling constant in the spacer layer, we derive a self-consistent equation for the average induced
magnetization. Based on the self-consistent equation, the induced magnetization is computed numerically, which then determines the coupling energies. The magnetization is found to oscillate with the width of the spacer layer. Furthermore, it shows distinct jumps with characteristic periods. At large d, the magnetization decays to zero rapidly, allowing one to define an effective decay length. Systematic studies of the dependence of decay length on the relevant parameters are performed.
1. M.N. Baibich et al., Phys. Rev. Lett. 61, 2472(1988).
2. B. Dieny et al., Phys. Rev. B 43, 1297(1991).
3. B. Diney et al., J. Magn. Magn. Mater. 93,101(1991).
4. D.C Mattis, The theroy of Magnetism I (Springer-Verlag
5. Berlin Heidelberg, New York, 1985) P.231.
6. S.S.P. Parkin et al., Phys. Rev. Lett. 64, 2304(1990).
7. S.S.P. Parkin et al., Appl. Phys. Lett. 58, 2710(1991).
8. S.S.P. Parkin et al., Phys. Rev. Lett. 66, 2152(1991).
9. S.S.P. Parkin et al., Appl. Phys. Lett. 68, 1162(1996).
10. Petroff F et al., J. Magn. Magn. Mater. 93, 95(1991).
11. Johnson et al., Phys. Rev. Lett. 68, 2688(1992).
12. Bruno P and Chappert C, Phys. Rev. Lett. 67, 1602(1991).
13. S. Yuasa et al., Nature 297, 234(2002).
14. P.Bruno, Phys. Rev. B 52,411(1995).
15. F.J. Himpsel et al., Phys. Rev. Lett. 67, 2363(1991).
16. F. J. Himpsel, Phys. Rev. B 44, 5966(1991).
17. F. J. Jedema et al., Nature 415, 345(2001).
18. M. Johnson, Nature 416, 809(2002).
19. M. Johnson, Phys. Rev. Lett. 70, 2142(1993).
20. C. Carbone et al., Phys. Rev. Lett. 71, 2805(1993).
21. J.E. Ortega et al., Phys. Rev. B 47, 1540(1993).
22. M.G. Samant et al., Phys. Rev. Lett. 72, 1112(1994).
23. W.L. Ling et al., Phys. Rev. B 65, 113406(2002).
24. J.E. Ortega et al., Phys. Rev. Lett. 69, 844(1992).
25. J.E. Ortega et al., J.Appl.Phys. 73, 5771(1993).
26. D. M. Edwards et al., J.Phys.:Condens.Matter 3,4941(1991).
27. Barbara A. Jones et al., Phys. Rev. Lett 71, 4253(1993).
28. Robert L. White, IEEE Trans. Magn. 28, 2482(1992).
29. David M. Edwards, IEEE Trans. Magn. 27, 3548(1991).
30. J.C.Slonczewski, Phys. Rev. B 39, 6995(1998).
31. W.Wernsdorfer et al., Phys. Rev. L 89, 197201(2002).
32. Jonathan R. Friedman et al., Phys. Rev. L 76, 3830(1996).
33. Ch. Wursch et al., Nature 389, 937(1997).
34. B. Dieny, J. Mag. Mag. Mater. 136, 335(1994).
35. F. J. Himpsel. et al., Advs. in Phys. 47, 511(1998).
36. Wu-Shou Zhang et al., Phys. Rev. B 58, 14959(1998).
37. U.Hartmann, Magnetic Multilayers and Giant Magneto-resistance (Springer-Verlag Berlin Heidelberg, New York, 2000).
38. E.Hirota, Giant MagnetoResistance Device (Springer-Verlag Berlin Heidelberg, New York, 2002).