簡易檢索 / 詳目顯示

研究生: 李賢學
Hsien-Hsuen Lee
論文名稱: 化學還原法製備奈米銀及其應用
Chemical reduction of nano-sized Ag and its applications
指導教授: 周更生
Kan-Sen Chou
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 157
中文關鍵詞: 奈米銀噴墨抗菌導電膠
外文關鍵詞: nano-sized Ag, ink-jet, antibacteria, conductive adhesive
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用化學還原法,以PVP (Polyvinylpyrrolidone)做為保護劑,在鹼性環境中以甲醛將銀離子還原為金屬銀。經由清洗程序,可將保護劑與反應副產物去除。在最佳條件下可獲得粒徑約為28nm,PVP殘留量5%的奈米銀。
    奈米銀的第一項應用為高分子導電膠,當微米銀片在導電膠中的填充量接近而未達臨界體積分率時,奈米銀的添加將有助於導電率的提升。然而,當導電膠中微米銀片的填充量高於臨界體積分率時,額外添加的奈米銀將使得銀片與奈米銀之間的接觸面積變小,進而造成體積電阻值的上升。單純使用奈米銀與PVAc(Polyvinyl acetate)所構成的奈米銀膠,可藉由含水量調整其黏度,使其得以應用於噴塗、旋轉鍍膜等塗佈程序。
    第二項應用將奈米銀以噴墨印刷方式,使用家用印表機(EPSON R210)在玻璃或PI(Polyimide)薄膜上製作出導電線路。奈米銀導線在噴墨印刷之後,經由低溫乾燥、260℃、10分鐘熱處理,可得體積電阻值5.6×10-6□-cm之銀導線。銀導線表面藉由電鍍銅的方式,可在銀導線表面生成厚度超過10□m的緻密電鍍銅,有助於降低電路的電阻。此製程可做為製作印刷電路板的替代方案,省去了昂貴的微影製程,可以快速而簡便的製造出多樣化的原型產品。
    本文提及的最後一項應用是將奈米銀做為抗菌劑。經過奈米銀處理的JIS白棉布以美國紡織染化協會(American Association of Textile Chemists and Colorists, AATCC)之抗菌效力評估(定量)法AATCC-100之抗菌測試方法對金黃葡萄球菌進行抗菌測試,處理後含銀105.3ppm的JIS白棉布在測試實驗中將細菌完全殺滅。布樣經過20次水洗後仍舊保有71%的奈米銀,其抗菌效果分別為>99.99%及99.4%。實驗利用噴塗、乾燥、二次造粒、熔融抽絲的程序也將奈米銀均勻地分散到尼龍纖維中,其做為人造纖維添加劑使用,具有極大的潛力。


    Nanosized Ag was synthesized by chemical reduction method with PVP (Polyvinylpyrrolidone) as the protective agent. The reduction reaction was carried out by formaldehyde in an alkaline environment. The PVP and the by-product could be removed after proper washing process. Under optimum condition, nano-Ag of 28nm having 5% residual PVP could be obtained.
    The first application was to use nano-Ag to get polymeric conductive adhesives. Nano-Ag will improve the conductivity of the paste with silver flake filling close to the percolation threshold. However, when the silver flake content was above the percolation threshold, the addition of nano-Ag will increase the resistivity due to the smaller contact area between flakes and these nano-Ag powders. If the paste was made from nano-Ag and PVAc (Polyvinyl acetate) only, the viscosity can be easily adjusted by water content and therefore it can be coated by either airbrush or spin coating.
    The second application was to use this nano-Ag in the ink-jet printing process to make conductive lines on both glass and polyimide film using a commercial printer (EPSON R210). Conducting Ag lines with a resistivity of 5.6×10-6□-cm could be obtained after soft baking followed by the heat treatment at 260℃ for 10 minutes. The electroplating of copper makes a dense deposition over 10 □m in thickness onto the silver lines that will reduce the resistance of the circuit. That could serve as an alternative method to make the printed circuit board (PCB), which avoids the tedious and expensive photolithography steps. One can make the prototype fast and easily.
    The last application investigated here is as an antibacterial reagent that helps the cloth (JIS white cotton cloth) to kill off the Staphylococcus aureus during the AATCC-100 (American Association of Textile Chemists and Colorists) test. Cotton fabrics contain nano-Ag of 105.3ppm at the start still remains about 71% of the nano-Ag after water wash for 20 times. The antibacterial effect is >99.99% and 99.4% respectively. It was also demonstrated that these nano-Ag powder could be dispersed uniformly into Nylon fibers by a series of procedures of praying, drying, re-pelleting and spinning, and thus offers great potential as a functional additive to the synthetic fibers.

    1. 奈米銀的合成研究 13 1.1. 文獻回顧 13 1.1.1. 反應相 13 1.1.2. 銀前驅物 14 1.1.3. 還原劑 14 1.1.4. 保護劑 17 1.1.5. 奈米銀生成型態 18 1.2. 實驗 20 1.2.1. 實驗藥品與儀器 20 1.2.2. 粒徑分析 21 1.2.3. 轉化率分析 24 1.2.4. 銀微粒的合成 25 1.3. 研究結果與討論 26 1.3.1. 保護劑對粒徑的影響 26 1.3.2. 鹼對轉化率的影響 28 1.3.3. 奈米銀的純化 29 1.4. 結論 31 1.5. 參考文獻 31 2. 奈米銀在導電膠的應用 39 2.1. 文獻回顧 39 2.1.1. 導電膠的分類 39 2.1.2. 導電填充物 42 2.1.3. 混練程序 44 2.1.4. 研究目的與內容 45 2.2. 實驗 46 2.2.1. 實驗藥品與儀器 46 2.2.2. 微米銀片與奈米銀之型態及基本性質 47 2.2.3. 三軸滾筒混練 49 2.2.4. 微米銀導電膠 53 2.2.5. 微米-奈米銀混成銀膠 53 2.2.6. 奈米銀導電膠製作 54 2.2.7. 熱處理與結構分析 54 2.2.8. 電性量測(四點探針法) 55 2.3. 研究結果與討論 57 2.3.1. 微米銀導電膠 57 2.3.2. 微米-奈米混成銀膠 57 2.3.3. 奈米銀膠 63 2.3.4. 熱處理對電性的影響 65 2.4. 結論 68 2.5. 參考文獻 69 3. 奈米銀在噴墨印刷上的應用 71 3.1. 文獻回顧 71 3.1.1. 噴墨印刷的歷史 71 3.1.2. 圖案化技術 74 3.1.3. 噴墨設備於工業之應用 75 3.1.4. 噴墨導線列印 77 3.1.5. 研究目的與內容 80 3.2. 實驗 81 3.2.1. 實驗藥品與儀器 81 3.2.2. 墨水製作與特性分析 82 3.2.3. 印表機硬體 84 3.2.4. 印表機軟體及參數設定 85 3.2.5. 導線之熱處理與電性量測 87 3.2.6. 導線表面型態觀察 87 3.2.7. 導線電鍍增厚 87 3.3. 研究結果與討論 89 3.3.1. 墨水製作與特性分析 89 3.3.2. 印表機設定及噴印效果 93 3.3.3. 導線之熱處理與電性量測 100 3.3.4. 導線電鍍增厚 108 3.4. 結論 112 3.5. 參考文獻 112 4. 奈米銀在抗菌材料上的應用 116 4.1. 文獻回顧 116 4.1.1. 奈米銀的抗菌效果 116 4.1.2. 銀離子對大腸桿菌的抗菌效果 118 4.1.3. 衣料纖維的抗菌處理 119 4.1.4. 抗菌骨骼癒合劑 121 4.1.5. 抗菌齒科材料 123 4.1.6. 淨水設備(活性碳纖維) 124 4.1.7. Polyamide的抗菌處理 125 4.1.8. 高分子表面改質 127 4.1.9. 奈米銀抗菌塗料 129 4.1.10. 研究目的與內容 130 4.2. 實驗 131 4.2.1. 實驗藥品與儀器 131 4.2.2. 奈米銀抗菌實驗 131 4.2.3. 銀離子的溶出率 132 4.2.4. 天然纖維(棉布)抗菌處理 133 4.2.5. 人造纖維(尼龍纖維)摻混奈米銀 134 4.3. 研究結果與討論 134 4.3.1. 奈米銀抗菌實驗 134 4.3.2. 銀離子的溶出率 137 4.3.3. 天然纖維(棉布)抗菌處理 138 4.3.4. 人造纖維(尼龍纖維)摻混奈米銀 142 4.4. 結論 145 4.5. 參考文獻 145 5. 總結 148 6. 附錄 149 6.1. 甲醛之毒性安全資料 149 6.2. 論文著作 156 圖目錄 圖 1 1粒徑分析(穿透式電子顯微鏡) 22 圖 1 2粒徑分析(穿透式電子顯微鏡粒徑分佈) 22 圖 1 3粒徑分析(動態雷射粒徑儀) 23 圖 1 4Tymecky 等人(2003)以厚膜技術所製作的銀離子電極 24 圖 1 5銀離子電極的檢量線 25 圖 1 6銀離子濃度與電位關係 25 圖 1 7奈米銀/氧化銀的X光繞射圖譜 30 圖 1 8奈米銀之高解析度穿透式電子顯微鏡照片 30 圖 2 1導電膠的分類 39 圖 2 2 (a)等向性導電膠 (b)異向性導電膠示意圖 40 圖 2 3高溫型銀膠的使用流程 42 圖 2 4實驗中用於調製導電膠的微米銀片 47 圖 2 5實驗中用於摻混之奈米銀 48 圖 2 6奈米銀使用熱重分析儀分析其熱重損失 48 圖 2 7三軸滾筒混練機 50 圖 2 8三軸滾筒混練機(運轉中) 50 圖 2 9混練原理示意圖 51 圖 2 10細度計示意圖 52 圖 2 11四點探針圖 55 圖 2 12校正因數與形狀的關係 56 圖 2 13微米銀膠與奈米-微米混成銀膠之體積電阻值 60 圖 2 14銀含量為 50wt.% 之微米銀膠 61 圖 2 15銀含量為 50wt.% 之微米銀膠外加5.7% 之奈米銀 61 圖 2 16添加奈米銀微粒於微米銀導電膠之示意圖 62 圖 2 17奈米銀膠的體積電阻值 64 圖 2 18體積電阻隨熱處理時間的變化 65 圖 2 19相同銀含量的銀膠其體積電阻值隨著熱處理溫度上升的變化情形 66 圖 2 20奈米銀經100℃、30分鐘熱處理 67 圖 2 21奈米銀經200℃、30分鐘熱處理 67 圖 2 22奈米銀膠體積電阻隨熱處理時間的變化 67 圖 3 1 Hertz所設計的連續供墨式噴墨印表機簡圖 71 圖 3 2 噴墨印表機分類 72 圖 3 3熱氣泡式與壓電式噴頭簡圖 73 圖 3 4圖案化技術使用之工具 75 圖 3 5Microfab公司所發表的被動元件 76 圖 3 6氣相凝結法製作奈米金屬微粒 78 圖 3 7Silver Sphere Nano Powder 79 圖 3 8奈米銀的熱重分析 82 圖 3 9液體表面張力 83 圖 3 10表面張力量測步驟 84 圖 3 11液體黏度量測 84 圖 3 12立體顯微鏡觀察噴墨口諸元 85 圖 3 13印表機選項與設定視窗 86 圖 3 14印表機最佳設定 87 圖 3 15電鍍槽裝置示意圖 88 圖 3 16奈米銀之穿透式顯微鏡照片 89 圖 3 17奈米銀粒徑分佈圖 90 圖 3 18奈米銀懸浮液之黏度(不同轉速) 90 圖 3 19奈米銀懸浮液之黏度(at 20rpm) 90 圖 3 20奈米銀懸浮液之表面張力 91 圖 3 21濃度25%之墨水與不同基板之接觸角 92 圖 3 22噴印缺陷(斷線) 92 圖 3 23不同黏度、表面張力之液滴型態照片 93 圖 3 24列印參數的選擇(紙張選擇) 95 圖 3 25列印參數的選擇(速度選擇) 95 圖 3 26導線寬度量測(玻璃基板) 96 圖 3 27導線實際寬度與厚度之關係(玻璃基板) 97 圖 3 28設定導線寬度與實際寬度關係圖 97 圖 3 29設定線寬與導線截面積關係 98 圖 3 30以掃瞄式探針顯微鏡分析導線截面積 98 圖 3 31雷射乾燥與熱表面乾燥 99 圖 3 32導線表面形態分析(掃瞄式探針顯微鏡) 100 圖 3 33導線測試圖案 101 圖 3 34熱處理前後表面結構 101 圖 3 35熱處理溫度150℃,處理時間與電阻關係 102 圖 3 36不同的熱處理溫度、時間與電阻關係 103 圖 3 37標準熱處理程序 103 圖 3 38不同溫度下體積電阻值隨溫度變化 104 圖 3 39堆疊噴印照片 105 圖 3 40不同線寬之層次堆疊與電阻下降關係(PI膜) 105 圖 3 41多層堆疊噴塗條件下之體積電阻值 107 圖 3 42不同條件下電鍍銅微觀結構、整體型態 110 圖 3 43奈米銀導線鍍銅剖面 110 圖 3 44掃瞄式探針顯微鏡分析銅線表面粗糙度 111 圖 3 45電鍍銅XRD分析結果 111 圖 4 1洋菜培養基中添加奈米銀以阻止大腸桿菌滋生 117 圖 4 2奈米銀的抗菌效果 117 圖 4 3奈米銀處理後之大腸桿菌 118 圖 4 4銀離子濃度與抗菌效率 119 圖 4 5銀離子與銀粒子對成骨細胞生長的影響 122 圖 4 6骨骼癒合劑添加銀離子,奈米銀粒子,或標準抗菌成分之生物毒性及抗感染效果評價 122 圖 4 7(Ag0.5X-Al0.5X)Si(1-X)O2玻璃抗菌測試 124 圖 4 8活性炭纖維披覆奈米銀 125 圖 4 9Polyamide/奈米銀複合材料中,銀離子釋出量與浸泡時間關係 126 圖 4 10奈米銀在Polyamide樹脂中的分佈 127 圖 4 11以UV光照射法製備銀奈米微粒於高分子基板上 128 圖 4 12電漿改質後之PP纖維 128 圖 4 13EDTA螯合銀離子之後以甲醛還原產生奈米銀微粒 129 圖 4 14樹枝狀有機分子保護之奈米銀粒 129 圖 4 15奈米銀抗菌塗料 130 圖 4 16奈米銀懸浮液 135 圖 4 17奈米銀之電子顯微鏡照片 135 圖 4 18奈米銀粒徑分佈 135 圖 4 19添加奈米銀之洋菜培養基抗菌效果 136 圖 4 20金屬銀粉之銀離子溶出量 137 圖 4 21銀離子溶出率與比表面積關係 138 圖 4 22對含浸奈米銀微粒之棉布進行水洗 140 圖 4 23水洗過程對奈米銀含量遞減情形 140 圖 4 25抗菌測試報告書 142 圖 4 26摻混奈米銀粒子之尼龍塑膠粒、纖維及紡織品 143 圖 4 27摻混奈米銀之尼龍纖維 144 圖 4 28摻混奈米銀之尼龍纖維表面型態照片 144 表目錄 表 1 1化學反應標準還原電位表 14 表 1 2奈米銀型態歸納 19 表 1 3粒徑分析對照表 23 表 1 4保護劑保護效果(保護劑添加量對粒徑的影響) 26 表 1 5保護劑保護效果(保護劑分子量對粒徑的影響) 27 表 1 6溫度效應(反應溫度對粒徑的影響) 28 表 1 7鹼添加量對轉化率及粒徑的影響 29 表 2 1高溫型導電膠的主要內容組成和其功用 41 表 2 2部分導電材料的密度與體積電阻值 (at 25℃) 43 表 2 3微米銀片基本特性表 47 表 2 4微米銀膠與奈米-微米混成銀膠之配方組成表 59 表 2 5經過熱處理後導電膠體積電阻值的下降率 68 表 3 1導電印刷文獻整理表 80 表 3 2電鍍條件表 88 表 3 3墨水黏度與表面張力對噴印之影響 93 表 3 4不同堆疊層數實測電阻與理論偏差量 106 表 3 5不同線寬實測電阻與理論偏差量 106 表 3 6電鍍導線電阻值 109 表 4 1銀離子對大腸桿菌毒性測試項目及其縮寫 119 表 4 2ICP-MS.對布樣在清洗前後之銀含量測試 120 表 4 3添加奈米銀之洋菜培養基之抗菌效果表 136 表 4 4耐水洗測試對照表 139

    Bell W.C., M.L. Myrick, “Preparation and characterization of nanoscale silver colloids by two novel synthetic routes”, Journal of Colloid and Interface Science, 242, p.300-305 (2001)
    Boccuzzi F., A. Chiorino, M. Manzoli, D. Andereeva, T. Tabakova, L. Ilieva, V. Iadakie, “Gold, silver and copper catalysts supported on TiO2 for pure production”, Catalysis Today, 75, p.169-175 (2002)
    Cai M., J.L. Chen, J. Zhou, “Reduction and morphology of silver nanoparticles via liquid- liquid method”, Applied surface science, 226, p.422-426 (2004)
    Cai W., L. Zhang, H. Zhong, G. He, “Annealing of mesoporous silica loades with silver nanoparticles within its pores from isothermal sorption”, J. Mater. Res., Vol. 13, p.2888-2895 (1998)
    Callegari A., D. Tonti, M. Chergui, “Photochemically grown silver nanoparticles with wavelength-controlled size and shape”Nano Letters, Vol.3, p.1565-1568 (2003)
    Cao Y., W.L. Dai, J.F. Deng, “The oxidative dehydrogenation of methanol over a novel Ag/SiO2 catalyst”, Applied Catalysis A: General, 158, L27-L34 (1997)
    Cao Y., W.L. Dai, J.F. Deng, “The synthesis, characterization and application of Ag-SiO2-Al2O3 sol-gel composites”, Material Letters, 50, p.12-17 (2001)
    Carddenas-Trivino G., V.V. L, C. Munoz, “Silver colloids from nonaqueous solvent”, Materials Research Bulletin, Vol. 33, p.645-653 (1998)
    Caswell K.K., C.M. Bender, C.J. Murphy, “Seedless, surfactantless wet chemical synthesis of silver nanowires”, Nano Letters, Vol. 3, p.667-669 (2003)
    Chen D., L. Gao, “Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process”, Journal of Crystal Growth, 264, p.216-222 (2004)
    Chen R., D.S. Xu, G.I. Guo, “Silver telluride nanowires prepared by dc electrodeposition in porous anodic alumina templates”, Journal of Materials Chemistry, 12, p.2435-2438 (2002)
    Chen S., D.L. Caroll, “Synthesis and characterization of truncated triangular silver nanoplates”, Nano Letters, vol. 2, p.1003-1007 (2002)
    Chen S., Z. Fan, D.L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly”, J. Phys. Chem. B, 106, p.10778-10781 (2002)
    Choi S., J.H. Kim, Y.S. Kang, “Wide-angle X-ray scattering studies on the structural properties of polymer electrolytes containing silver ions”, Macromolecules, 34, p.9087-9092 (2001)
    Chou K.S., C.Y. Ren ,“Synthesis of nanosized silver particles by chemical reduction method”, Materials Chemistry and Physics, 64, p.241-246 (2000)
    Chou K.S., Y.S. Lai ,“Effect of polyvinyl pyrrolidone molecular weight on the formation of nanosized silver colloids”, Materials Chemistry and Physics, 83, p.82-83 (2004)
    Compagnini G., L.D’Urso, O. Puglisi, “Structure and properties of silver nanoparticles dispersed in SiO2 thin films obtained by situ self-reduction”, Materials Science &Engineering C, 19, p.295-298 (2002)
    Du Y., Y. Fang, “Assignment of change transfer absorption band in optical absorption spectra of the adsorbate-silver colloid system”, Spectrochemica Acta Part A, 60, p.535-539 (2004)
    Egorova E.M., A.A. Revina, “Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin”, Colloids and surfaces, 168, p.87-96 (2000)
    Esumi K., T. Hosoya, A. Suzuki, K. Torigoe, “Formation of gold and silver nanoparticles in aqueous solution of sugar-persubstituted poly(amidoamine) dendrimers” Journal of Colloid and Interface Science, 226, p.346-352 (2000)
    Felidj N., G.L.J. Pantigny, J. Aubard, “A new approach to determine nanoparticle shape and size distribution of SERS-active gold-silver mixed colloid”, New J. Chem., p.725-732 (1998)
    Hardikar V.V., D.V. Goia , E. Matijevic, “Adhesion of silver particles on aluminum beads”, Colloids and Surfaces, 159, p.121-133 (1999)
    Hayashi C.,“Ultrafine particles”, J. Vac. Sci. Technol. A5(4), p.1375-1384 (1987)
    Henglein A., “Colloidal palladium nanopareicles: reduction of Pd(Ⅱ) by H2; PdcoreAushell Particles”, The Journal of Physical Chemistry B, Vol. 104, p.6683-6685 (2000)
    Henglein A., M. Giersig, “Formation of colloidal silver nanoparticles: capping action of citrate”, J. Phys. Chem. B, 103, p.9533-9539 (1999)
    Hong Y.K., H. Kim, G. Lee, W. Kim, J. Park, J.W. Cheon, J.A. Kob, “Controlled two-dimensional distribution of nanoparticles by spin-coatiog method”, Applied Physics Letters, vol 80, p.844-846 (2002)
    Huang C.Y., H.J. Chiang, J.C. Huang, S.R. Sheen, “Synthesis of nanocrystalline Ag-Pd Alloys by chemical reduction method”, Nanostructured Materials, Vol. 10, p.1393-1400 (1998)
    Jeunieau L., J.B. Nagy, “Adsorption of pseudoisocyanine on nanoparticles of silver halides”, Colloids and surfaces, 151, p.419-434 (1999)
    Jian Z., Y.C. Wang, Y. Lu, “Fluorescence spectra characters of silver-coated gold colloidal nanoshells”, Colloids and Surfaces, 232, p.155-161 (2004)
    Jiang Z.J., C.Y. Liu, Y. Liu, “Formation of silver nanoparticles in an acid-catalyzed silica colloidal solution”, Applied Surface Science, 233, p.135-140 (2004)
    Jin J.H., S.U. Hong, J. Won, Y.S. Kang, “Spectroscopic for molecular structure and complexation of silver polymer electrolytes”, Macromolecules, 33, p.4932-4935 (2000)
    Jin J.H., S.U. Hong, Y.S. Kang, “Spectroscopic studies molecular structure and complexation of silver polymer electrolytes”, Macromolecules, 33, p.4932-4935 (2000)
    Khanna P.K., V.V.V.S. Subbarao, “Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium”, Material Letters, 57,p.2242-2245 (2003)
    Kim K. Y., Y.T. Choi, D.J. Seo, S.B. Park, “Preparation of silver colloid and enhancement of dispersion stability in organic solvent”, Materials Chemistry and Physics, 88, p.377-382 (2004)
    Kim Y.C., N.C. Park, J.S. Shin, S. R. Lee, Y.J. Lee, D.J. Moon, “Partial oxidation of ethylene to ethylene oxide over nanosized Ag/α-Al2O3”, Catalysis Today, 87, p.153-162 (2003)
    Komarneni S., D. Li, B. Newalkar, H. Katsuki, A.S. Bhalla , “Microwave-polyol process for Pt and Ag nanoparticles”, Langmuir, 18, p.5959-5962 (2002)
    Kumar A., H. Joshi, R. Pasricha, A.B. Mandale, M. Sastry, “Phase transfer of silver nanoparticles from aqueous organic solutions using fatty amine molecules”, Journal of Colloid and Interface Science, 264, p.396-401 (2003)
    Lakhwani S., M. N. Ranaman, “Adsorption of polyvinylpyrrolidone (PVP) and its effect on the consolidation of suspensions of nanocrtstalline CeO2 particles”, Journal of Material Science, 34, p.3909-3912 (1999)
    Lin X.Z., X. Teng , H. Yang, “Direct dispersed sliver nanoparticles using a single-source precursor” , Langmuir , 19 , p.10081-10085 (2003)
    Liu Y., C.Y. Liu, L.B. Chen, Z.Y. Zhang,“Adsorption of cations onto the surfaces of silver nanoparticles”, Journal of Colloid and Interface Science, 257, p.188-194 (2003)
    Lu H.W., S.H. Liu, X.L. Wang, X.F. Qian, J. Yin, Z.K. Zhu, “Silver nanocrystals by hyperbranched polyurethane-assisted photochemical reduction of Ag+”, Materials Chemistry and Physics, 81, p.104-107 (2003)
    Maillard M., S. Giorgio, M.P. Pileni, “Silver nanodisks”, Advanced Materials, 14, p.1084-1086 (2002)
    Muniz-Miranda M., “Silver-doped silica colloidal nanoparticles Characterization and optial measurements”, Colloids and surfaces, 217, p.185-189 (2003)
    Nersisyan H.H. , J.H. Lee, H.T. Son, D.Y. Maeng, “A new and effective chemical reduction method for preparation of nanosized silver power and colloid dispersion”, Materials Research Bulletin, 38, p.949-956 (2003)
    Park J., V. Privman, E. Matijevic, “Model of formation of monodispersed colloid”, J. Phys. Chem, 105, p.11630-11635 (2001)
    Plyuto Y., J.M. Berquier, C. Jacquiod, C. Richolleau, “Ag nanoparticles synthesized in template-structured mesoporous silica films on a glass substrate”, Chem. Commum., p.1653-1654 (1999)
    Privman V., D.V. Goia, J. Park, E. Matijevic, “Mechanism of formation of monodispersed colloids by aggregation of nanosize precursors”, Journal of Colloid and Interface Science, 213, p.36-45 (1999)
    Qi W.H., M.P. Wang, “Size and shape dependent melting temperature of metallic nanoparticles”, Materials Chemistry and Physics, 88, p.280-284 (2004)
    Quinten M., “The color of finely dispersed nanoparticles”,Applied Physics B, 73, p.317-326 (2001)
    Rivas L., S. Sanchez-Cortes, J. V. Garcia-Ramos, G. Morcillo, “Mixed silver/gold colloids: a study of their formation morphology, and surface-enhanced Raman activity”, Langmuir, 16, p.9722-9728 (2000)
    Roucoux A., J. Schulz, H. Patin, “Reduced transition metal colloids: a novel family of reusable catalysts”, Chem. Rev. 102, p.3757-3778 (2002)
    Sarathy K..V., G.U. Kulkarni, C. N. R. Rao, “A novel method of preparing thiol-derivatisted nanoparticles of gold, platinum and silver forming superstructure”,Chem. Commun, p.537-538 (1997)
    Shibata T., B.A. Bunker, Z. Zhang, D. Meisel, C.F. Vardeman, J.D. Gezelter, “Size-dependent spontaneous alloying of Au-Ag nanoparticles”, J. Am. Chem. Soc., 124, p.11989-11996 (2002)
    Shin H.S., H.C. Choi, Y. Jung, S.B. Kim, H.J. Song, H.J. Shin, “Chemical and size effect of nanocomposites of silver and polyvinyl pyrrolidone determined by X-ray photoemission spectroscopy”, Chemical Physics Letters, 383, p.418-422 (2004)
    Shirtcliffe N., U. Nickel, S. Schneider, ‘Reproducible preparation of silver sols with small pareicle size using borohydrine of larger particles”, Journal of Colloid and Interface Science, 211, p.122-129 (1999)
    Silvert P.Y., R. Herrea-Urbina , K. Tekaia-Elhsissen , “Preparation of colloidal silver dispersions by the polyol process Part2.-Mechanism of particle formation”, J. Mater. Chem., 7(2), p.293-299 (1997)
    Silvert P.Y., R. Herrea-Urbina , K. Tekaia-Elhsissen , “Preparation of colloidal silver dispersions by the polyol process Part1.-Synthesis and characterization”, J. Mater. Chem., 6, p.573-577 (1996)
    Slistan-Grijalva A., R. Herrera-Urbina , J.F. Rivas-Silva , M. Avalos-Borja , F.F. Castillon , A. Posada-Amarillas , “Assessment of growth of silver nanoparticles synthesized from an ethylene glycol-silver nitrate-polyvinylpyrrolidone solution”, Physica , E 25 , p.438-448 (2005)
    Sondi I., D.V. Goia, E. Matijevic , “Preparation of hightly concentrated stable dispersion of uniform silver nanoparticles”, Journal of Colloid and Interface Science, 260, p.75-81 (2003)
    Sun Y. and Y. Xia, “Shape-controled synthesis of gold and silver nanoparticles”, Science, vol. 298, 5601, p.2176-2179 (2002)
    Sun Y., B. Gates, B. Mayers, Y. Xia, “Crtstalline silver nanowires by soft solution processing”, Nano Letters, Vol. 2, p.165-168 (2002)
    Sun Y., Y. Yin, B.T. Mayers, T. Herricks, “Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the process of seeds and poly (vinyl pyrrolidone)”, Chem Mater, 14, p.4736-4745 (2002)
    Suyal G., “Bimetallic colloids of silver and copper in thin films: col-gel synthesis and characterization”, Thin solid films, 426, p.53-61 (2003)
    Taleb A., C. Petit, M. pileni, “Optical properities of self-assembled 2D and 3D superlattices of silver nanopareicles”, J. Phys. Chem., 102, p.2214-2220 (1998)
    Tsuji T., N. Watanabe, M. Tsuji, “Laser induced morphology change of silver colloids: formation of nano-size wires”, Applied surface science, 211, p.189-193 (2003)
    Tymecki L., E. Zwierkowska , S. Glab, R. Koncki, “Strip thick-film silver ion-selective electrodes”, Sensor and Actuators B Chemical, 96, p.482-488 (2003)
    Wang W., S. Efrima, O. Regev, “Directing oleate stabilized nanosized silver colloids into organic phases”, Langmuir, 14, p.602-610 (1998)
    Wu S., M. Shuyuan “Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI”, Materials Chemistry and Physics, 89, p.423-427 (2005)
    Yakutik I.M., G.P. Shevcchenko, S.K. Rakhmanov, “The formation of monodisperse spherical silver particles”, Colloids and Surfaces, 242, p.175-179 (2004)
    Yin B., H. Ma, S. Wang, S. Chen,”Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone)”, J. Phys. Chem., 107,p. 8898-8904 (2003)
    Zhang J., D. Roll, C.D. Geddes, J.R. Lakowicz ,“Aggregation of silver nanoparticle- dextran adducts with concanavalin A and competitive complexation with glucose”, J. Phys. Chem. B, 108, p.1220-12214 (2004)
    Zhang J., P. Chen, C.H. Sun, X.J. Hu, “Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system”, Applied Catalysis A, 266, p.49-54 (2004)
    Zhang J., X.L. Liu, Z.C. Cui, G. Zhang, B. Zhao, B. Yang, “Thin films of Ag nanoparticles prepared from the reduction of AgI nanoparticles in self-assembled films”, Journal of Colloid and Interface Science, 255, p.115-118 (2002)
    Zhu J.J., Q.F. Qiu, H. Wang, J.R. Zhang, J.M. Zhu, Z.Q. Chen, “Synthesis of silver nanowires by a sonoelectrochemical method”, Inorganic Chemistry Communications, 5, p.242-244 (2002)
    Zuo R., L. Li, Z. Gui, “Effects of BaTiO3 additive on densification mechanism of silver-palladium paste”, Materials Chemistry and Physics, 74, p.182-186 (2002)
    Beadle, W.E., J.C.C. Tsai and R.D. Plummer, “Quick reference manual for silicon integrated circuit technology”, Bell Telephone Laboratories,(1985)
    Chou K.S. and C.Y. Ren, “Synthesis of nano-sized silver particles by chemical reduction method,” Mater. Chem. Phys., 64, p. 241-246 (2000)
    Chou K.S., K.C. Huang and H.H. Lee, “Fabrication and sintering effect on the morphologies and conductivity of nano-Ag particle films by the spin coating method”, Nanotechnology, 16, p. 779-784 (2005)
    Chou K.S., K.C. Huang, Z.H. Shih, “Effect of Mixing Process on Electromagnetic Interference Shielding Effectiveness of Nickel/Acrylonitrile–Butadiene–Styrene Composites,” J. Appl. Poly. Sci, Vol. 97, 7, p. 128-135 (2005)
    Dilsiz N., R. Partch, E. Matijevic, and E. Sancaktar, “Silver coating of spindle- and filament-type magnetic particles for conductive adhesive applications”, J. Adhesion Sci. and Techno., 11 (8), p. 1105-1118 (1997)
    Fu Y., J. Liu, and M. Willander, “Conduction modeling of a conductive adhesive with bimodal distribution of conducting element”, International J. Adhesion and Adhesives, 19, p. 281-286 (1999)
    Jagt J.C., “Reliability of electrically conductive adhesive joints for surface mount applications: A summary of the state of the art”, IEEE Trans. on Components, Packaging, and Manufacturing Techno. Part A, 21 (2), (1998)
    Lo C.T., and K.S. Chou, “Effects of mixing procedures on the volume fraction of silver particles in conductive adhesives,” J. Adhesion Sci. Technol., 15 (7), p. 783-792 (2001)
    Nersisyan H.H., J. H. Lee, H. T. Son, C. W. Won, and D. Y., “A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion”, Materials Research Bulletin, 38, p. 949-956 (2003)
    Ruschau G.R., S. Yoshikawa, and R. E. Newnham, “Resistivities of conductive composites,” J. Appl. Phys., 72, p. 953-959 (1992)
    Sancaktar E., and N. Dilsiz, “Pressure dependent conduction behavior of various particles for conductive adhesive applications”, J. Adhesion Sci. and Techno., 13 (6), p. 679-693 (1999)
    Sun Y., B. Gates, B. Mayers, and Y. Xia, “Crystalline silver nanowires by soft solution processing”, Nano Lett., 2 (2), p. 165-168 (2002)
    Sze, S.M., “Semiconductor devices physics and technology”, John Willey & Sons, U.S.A., (1985)
    Webber M., M.R. Kamal, “Estimation of the volume resistivity of electrically conductive composite”, Polymer Composite., 18 (6), p. 711-725 (1997)
    Wolfson H., and G. Elliott, “Electrically conducting cements containing epoxy resins and silver”, US Patent 2,774,747, (1956)
    Ye L., Z. Lai, J. Liu, and A. Tholen, “Effect of Ag Particle Size on Electrical Conductivity of Isotropically Conductive Adhesives”, IEEE Transactions on Electronics Packaging Manufacturing, 22, p. 299-302 (1999)
    Zhang, M.Q., J.R. Xu, H.M. Zeng, Q. Huo, Z.Y. Zhang and F.C. Yun, “Fractal approach to the critical filler volume fraction of an electrically conductive polymer composite”, Journal of Materials Science, vol. 30, p.4226-4232, (1995)
    Bieri N. R., J. Chung, D. Poulikakos, and C. P. Grigoropoulos, “Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension”, Superlattices and Microstructures, 35, p. 437-444 (2004)
    Bieri N. R., J. Chung, S.E. Haferl, D. Poulikakos, and C.P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions”, Applied Physics Letters, Vol. 82, no. 20, p. 3529-3531 (2003)
    Chou K.S. and Y.S. Lai, Mater. Chem. & Phys., ”Effect of polyvinyl pyrrolidone molecular weights on the formation of nanosized silver colloids”, 83 p. 82-88 (2004)
    Chung J., S. Ko, N. R. Bieri, C. P. Grigoropoulos, and D. Poulikakos, ”Conductor microstructures by laser curing of printed gold nanoparticle ink”, Applied Physics Letters, Vol. 84, no. 5, p. 801-803 (2004)
    Croucher M.D. and M. L. Hair, “Design criteria and future directions in inkjet ink technology”, Ind. Eng. Chem. Res., 28, p. 1712-1718 (1989)
    Danzebrink R. and M. A. Aegerter, “Deposition of micropatterned coating using an ink-jet technique”, Thin Solid Films, 351, p. 115-118 (1999)
    Ding X., Y. Li, D. Wang, Q. Yin, “Fabrication of BaTiO3 dielectric films by direct ink-jet printing”, Ceramics International, 30 p.1885–1887 (2004)
    Fuller S. and J.Jacobson, ”Ink-jet fabricated nanoparticle MEMS”, Proc. IEEE Microelectromesh. Syst. Conf., p. 138-141, (2000)
    Fuller S., E.J. Wilhelm, and J.M. Jacobson, “Ink-jet printed nanoparticle microelectromechanical systems”, J. of Microelectromechanical Systems, Vol. 11, (1), p. 54-60 (2002)
    Hayashi C., “Ultrafine particles”, J. Vacuum Sci. Technol. A, Vol. 5, (4), p. 1375-1384 (1987)
    Heinzl J. and C. H. Hertz, Advances in Electronics and Electron Physics, p. 65-91 (1985)
    Nur H.M., J. H. Song, J. R. G. Evans, and M. J. Edirisinghe, “Ink-jet printing of gold conductive tracks”, J. Material Science: Materials in Electronics, 13, p. 213-219 (2002)
    Pede D., G. Serra, and D.D. Rossi, “Microfabrication of conducting polymer devices by ink-jet stereolithography”, Materials Science and Engineering C, 5, p. 289-291 (1998)
    Shah P., Y. Kevrekidis, and J.Benziger, “Ink-jet printing of catalyst patterns for electroless metal deposition”, Langmuir, 15, p. 1584-1587 (1999)
    Shah V. G. and D. J. Hayes, “Fabrication of passive elements using ink-jet technology,” (2002) http://www.microfab.com/about/papers/IMAPS_02_passives.pdf
    Sumitomo Electric Industries, 2005, http://www.sumitomoelectricusa.com/scripts/products/ncp/silver.cfm
    Szczech J. B., C. M. Megaridis, D. R. Gamota, and J. Zhang, “Fine-line conductor manufacturing using drop-on-demand PZT printing technology”, IEEE Transcations on Electronics Packaging Manufacturing, vol. 25, (1), p.26-33 (2002)
    Szczech J. B., C. M. Megaridis, J. Zhang, and D. R. Gamota, “Ink jet processing of metallic nanoparticle suspensions for electronic circuitry fabrication”, Microscale Thermophysical Engineering, 8, p. 327-339 (2004)
    Wallace D., D. Hayes, T. Chen, V. Shah, D. Radulescu, P. Cooley, K. Wachtler, and A. Nallani, “Think additive:ink-jet deposition of materials for MEMS packaging”, MicroFab Technologies, Inc (2004) http://www.microfab.com/about/papers/imaps_mems_2004.pdf
    Wu H.C., W.S. Hwang, H.J. Lin, “Development of a 3-dimensional simulation system for micro-inkjet and its experimental verification”, J. of Materials Science and Engineering, Vol.36. (2), p. 86-97 (2004)
    Zhao X., J. R. G. Evans, M. J. Edirisinghe, and J. H. Song, “Formulation of a ceramic ink for a wide-array drop-on-demand ink-jet printer”, Ceramic International, 29, p. 887-892, (2003)
    工研院光電所, “工研院光電所九十四年度經濟部工業局光電技術人才培訓計畫講義,” 平面顯示器之噴墨製程技術研討會, 2005
    殷孟雲, “噴墨印表機設計原理,” 全華出版社, 2001
    Alt V., T. Bechert, P. Steinrucke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, R. Schnettler, “An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement”, Biomaterials, 25 p.4383-4391 (2004)
    Aymonier C., U. Schlotterbeck, L. Antonietti, P. Zacharias,R. Thomann, J.C. Tiller and S.Mecking, “Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties”, Chem. Commun., p.3018~3019 (2002)
    Balogh L., G.I. Hagnauer, D.A. Tomalia, and A.T. McManus, “Antimicrobial dendrimer nanocomposites and a method of treating wounds”, U.S. Patent, 6,224,898B1 (2001)
    Chi G.J., S.W. Yao, J. Fan, W.G. Zhang, and H.Z. Wang, “Antibacteria activity of anodized aluminum with deposited silver”, Surface and Coatings Technology, 157, p.162-165 (2002)
    Frederix F., J.M. Friedt, K.H. Choi, W. Laureyn, A. Campitelli, D.Mondelaers, G. Maes, and G.Borghs, “Biosensing based on light absorption of nanoscaled gold and silver particles”, Anal. Chem., 75, p.6894~6900 (2003)
    Guha P., D.Ganguli, S. Chaudhuri, and K. Chakrabarti, “Optical absorption of polyethylene glycol (PEG) modified silica matrix embedded with nanocrystalline silver”, Materials Letters, 58, p.2963~2968 (2004)
    Hamouda T. and J.R. baker, “Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli”, J. of Applied Microbiology, 99, p.397~403 (2000)
    Hu J.W., G.B. Han, B.Ren, S.G. Sun and Z.Q. Tian, “Theoretical consideration on preparing silver particle films by adsorbing nanoparticles from bulk colloids to an air-water interface”, Langmuir, 20, p.8831~8838 (2004)
    Kawashita M., S. Tsuneyama, F. Miyaji, T. Kokubo, H. Kozuka, and K. Yamamoto, “Antibacterial silver-containing silica glass prepared by sol-gel method”, Biomaterials, 21, p.393-398 (2000)
    Kumar R. and H. Munstedt, “Silver ion release from antimicrobial polyamide/silver composites”, Biomaterials 26, p.2081~2088 (2005)
    Lee H.J., S.Y. Yeo, and S.H. Jeong, “Antibacterial effect of nanosized silver colloidal solution on textile fibrics”, J. of Material Science, 38, p.2199-2204 (2003)
    Park S.J. and Y.S. Jang, “Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior”, J. of Colloid and Interface Science 261, pp.238-243, (2003)
    Sondi I., and S.S. Branka, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria”, J. of Colloid and Interface Science, 275, p.177~182 (2004)
    Stoimenov P.K., R.L. Klinger, G.L. Marchin, and K.J. Klabunde, “Metal oxide nanoparticles as bactericidal agents”, Langumuir, 18, pp.6679~6686 (2002)
    Xu J.Z., Y. Zhang, G.X. Li and J.J. Zhu, “An electrochemical biosensor constructed by nanosized silver particles doped sol-gel film”, Materials Science and Engineering C, 24, pp.833~836 (2004)
    Yan J., J. Cheng, “Nanosilver-containing antibacterial and antifungal granules and methods for preparing and using the same”, U.S. Patent, 6,379712B1 (2002)
    Yuranova T., A.G. Rincon, A. Bozzi, S. Parra, C. pulgrain, P. Albert, J. Kiwi, “Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver”, J. of Photochemistry and Photobiology A: Chemistry, 161, p.27-34 (2003)
    Zhao G. and E.Stevens, “Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion”, BioMetals, Vol. 11, p.27~32 (1997)
    陳志勇, 朱遠志, 洪貫庭, “以高分子基板製備奈米微粒之研究(I)”, 第二十七屆高分子研討會論文專輯, 國科會計畫編號NSC91-2216-E006-022
    黃耀輝, 洪貫庭, 曾俊豪, “高分子纖維製備無機奈米微粒複合材料及其應用之研究(I)”, 第二十七屆高分子研討會論文專輯, 國科會計畫編號NSC91-2216-E006-023

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE