研究生: |
姚柏宏 Yao, Po Hung |
---|---|
論文名稱: |
微奈米光學元件應用於低散斑雷射投影與極化背光之研究 Investigation of micro-nano optics applied in low speckle laser projection and polarized backlight |
指導教授: | 陳政寰 |
口試委員: |
陳政寰
田仲豪 林晃巖 郭浩中 傅建中 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 雷射散斑 、投影機 、散斑對比 、微透鏡陣列 、奈米金屬光柵 、微奈米結構 |
外文關鍵詞: | laser speckle, projector, speckle contrast, microlens array, nano wire grating, micro and nano structure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
液晶顯示器發展至今雖已在商品化技術上達到相當成熟之程度,但其光學效率低之缺點卻遲未能獲得改善。近10多年中,受益於傳統超精密加工與微影蝕刻製程等技術之快速發展與高技術成熟度,促使光學特性上具高度設計彈性、多功能性與高積體整合性等特色之微、奈米光學元件於各類光學系統中應用之重要性已吸引眾多研究與技術開發資源相繼投入。利用微、奈米結構光學元件可展現之光學調制特性,本研究嘗試運用其於改善傳統液晶顯示光學系統之效能。基於幾何光學、純量繞射光學與嚴格耦合波理論,依據不同之光學系統平台需求,本研究進行特性各異之微、奈米光學元件之設計與光學模組建構,以了解此些微、奈米光學元件對液晶顯示系統之效能影響程度。本研究中之光學驗證平台主要為雷射投影系統、極化光背光模組。於雷射投影系統中,本研究開發完成一雙面微透鏡陣列以進行雷射照明光束整形,並結合一扁平振動模組達到降低投影散斑對比之效果,進而改善投影影像品質;於極化背光模組中,透過可縮小出光角度分佈之微反射結構導光板與微柱狀鏡陣列膜片之設計與模組製作,驗證可同時達成提升反射式奈米光柵偏光片之總偏光穿透效率與模組中心輝度增益之目的。
Although the commercialization technology of liquid crystal displays is very mature nowadays, the issues of poor optical efficiency is still remaining to be improved. In the recent decade, taking the advantage of rapid and mature development of the ultra precision tooling technology and lithography technology micro and nano structure optical components revealing design flexibility, multi-functionality, and high integration have attracted abundant attention in different research fields of optical systems. Knowledge of geometric optics, diffraction optics, and rigorous couple wave theory is applied to investigate the optical properties of the micro and nano structure optical elements. In this thesis, these valuable properties of micro and nano structure components were studied and applied to improve the optical performance of a laser projection system and to develop a polarized backlight for enhancing optical efficiency of LCD displays. In the proposed laser projection system, a double-side microlens array beam shaper was developed to shape the profiles of laser light sources and attached to a vibration module as a speckle reduction unit. The performance of speckle suppression was evaluated and factors influencing speckle measurement were studied. In Chapter 4, a new polarized backlight structure consisting of a designated aperture-limited light guide plate and a dedicated lenticular lens array was proposed and prototyped to demonstrate enhancement of the extraction efficiency of polarized light through a wire grid polarizer. Furthermore, the central brightness is increased simultaneously.
1. Jean-Marc Bonard, Hannes Kind, Thomas Stöckli, Lars-Ola Nilsson, “Field emission from carbon nanotubes: the first five years,” Solid-State Electronics, Vol.45, pp.893-914 (2001)
2. Po-Chiang Chen, Guozhen Shen, Saowalak Sukcharoenchoke and Chongwu Zhou, “Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films,” Appl. Phys. Lett., Vol. 94, 043113 (2009)
3. Li Yukui, Zhu Changchun, and Liu Xinghui, “Field emission display with carbon nanotubes cathode: prepared by a screen-printing process,” Diamond and Related Materials, Vol.11, pp.1845-1847 (2002)
4. W. B. Choi and et al., “The First 9-inch Carbon-Nanotube Based Field-Emission Displays for Large Area and Color Applications,” SID Symposium Digest of Technical Papers, Vol.31, pp.324-327 (2000)
5. P.D. Rock, A. Naman, P.H. Holloway, Sey Shing Sun, and R.T. Tuenge, "Materials Used in Electroluminescent Displays," http://www.distec.com/Electro.htm, accessed on July 13 (1999)
6. Ron Khormaei and et al., "High Resolution Active Matrix Electroluminescent Display", Society for Information Display Digest, pp. 137 (1994)
7. The publication of his observations was in Henry J. Round, "A Note on Carborundum," Electrical World, Vol. 19, pp.309 (1907)
8. Vijay P. Singh, Srinivas Krishna and David C. Morton, “Electric field and conduction current in ac thin‐film electroluminescent display devices,” J. Appl. Phys. 70, pp.1811 (1991)
9. Brody T.P., Fang Chen Luo, Szepesi Z.P., and Davies D.H., “A 6 × 6-in 20-lpi electroluminescent display panel,” Electron Devices IEEE, Vol.22, pp.739 - 748 (1975)
10. Wai Lek Ng, M. A. Lourenço, R. M. Gwilliam, S. Ledain, G. Shao & K. P. Homewood, “An efficient room-temperature silicon-based light-emitting diode,“ Nature, Vol. 410, pp.192-194 (2001)
11. Atsushi Tsukazaki and et al., “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,“ Nature Materials 4, pp.42 - 46 (2005)
12. Russell D. Dupuis and Michael R. Krames, “History, Development, and Applications of High-Brightness Visible Light-Emitting Diodes,” Journal of Lightwave Technology, Vol. 26, pp. 1154-1171 (2008)
13. Mueller-Mach Regina, Mueller Gerd O., Krames M.R., and Trottier T., “High-power phosphor-converted light-emitting diodes based on III-Nitrides,” Selected Topics in Quantum Electronics, Vol.8, pp.339-345 (2002)
14. Youngkyoo Kim and et al., “Hole-transporting polyimide for organic electroluminescent display,” Thin Solid Films, Vol.363, pp. 263-267(2000)
15. Junji Kido, Masato Kimura, and Katsutoshi Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device,” Science, Vol.267, pp. 1332-1334 (1995)
16. Tatsuya Sasaoka and et al., “A 13.0-inch AM-OLED Display with Top Emitting Structure and Adaptive Current Mode Programmed Pixel Circuit (TAC),” SID Symposium Digest of Technical Papers, Vol. 32, pp.284-387 (2001)
17. Mizukami M. and et al., “Flexible AM OLED panel driven by bottom-contact OTFTs,“ Electron Device Letters, Vol.27, pp.249-251 (2006)
18. Sugimoto A. and et al., “Flexible OLED displays using plastic substrates,” Selected Topics in Quantum Electronics, Vol.10, pp.107-114 (2004)
19. Hsin Her Yu, Shug-June Hwang, and Kuo-Cheng Hwang, “Preparation and characterization of a novel flexible substrate for OLED,” Optics Communications, Vol.248, pp.51-57 (2005)
20. C. H. Lin, R. H. Chiang, M. L. He, C. W. Chen, “Extraordinarily wide-view and wide spectral bandwidth transflective liquid-crystal displays,” Optics Express, Vol. 18, pp.4601-4608 (2010)
21. Hiroyuki Mori, “The Wide View (WV) Film for Enhancing the Field of View of LCDs,” Journal of Display Technology, Vol. 1, pp.179- (2005)
22. Zhibing Ge and et al., “Wide-View and Broadband Circular Polarizers for Transflective Liquid Crystal Displays,” Journal of Display Technology, Vol. 4, pp.129-138 (2008)
23. H. C. Cheng, Ben-David Ilan,S. T. Wu, “Five-Primary-Color LCDs,” Journal of Display Technology, Vol. 6, pp.3-7 (2010)
24. Y. M. Lee, and et al., “Refractive Index and Effective Thickness Measurement System for the RGB Color Filter Coatings With Absorption and Scattering Properties,” Journal of Display Technology, Vol. 10, pp.57-70 (2014)
25. U. Happek, S. Okamoto, A. A. Setlur, “Phosphors for New-Generation Lighting,” The Electrochemical Society (2009)
26. F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. Shieh, “Color Filter-Less LCDs in Achieving High Contrast and Low Power Consumption by Stencil Field-Sequential-Color Method,” Journal of Display Technology, Vol. 6, pp.98-106 (2010)
27. Z. Y. Luo, Y. W. Chen, and S. T. Wu, “Wide color gamut LCD with a quantum dot backlight,” Optics Express, Vol. 21, pp.26269-26284 (2013)
28. C. C. Chen, C. M. Tsai, and Y. C. Fang, “Optical Design of LCOS Optical Engine and Optimization With Genetic Algorithm,” Journal of Display Technology, Vol. 5, pp.293-305 (2009)
29. P. H. Yao, C. H. Chen, and C. H. Chen, “Low speckle laser illuminated projection system with a vibrating diffractive beam shaper,” Optics Express, Vol. 20, pp.16552-16566 (2012)
30. X. J. Yu, Y. L. Ho, L. Tan, H. C. Huang, and H. S. Kwok, “LED-Based Projection Systems,” Journal of Display Technology, Vol. 3, pp.295-303 (2007)
31. J. C. Su and T. M. Lin, “Polarized white light emitting diodes with a nano-wire grid polarizer, Optics Express, Vol. 21, pp.840-845 (2013)
32. J. K. Lee and et al., “Optically bifacial thin-film wire-grid polarizers with nano-patterns of a graded metal-dielectric composite layer,“Optics Express, Vol. 16, pp.16867-16876 (2008)
33. P. H. Yao, C. J. Chung, C. L. Wu, and C. H. Chen, “Polarized backlight with constrained angular divergence for enhancement of light extraction efficiency from wire grid polarizer,” Optics Express, Vol. 20, pp.4819-4829 (2012)
34. Vena Carlo and et al., “Light depolarization effects during the Fréedericksz transition in nematic liquid crystals,” Optics Express, Vol. 15, pp.17063-17071 (2007)
35. J. H. Oh, S. J. Yang, and Y. R. Do, “Polarized white light from LEDs using remote-phosphor layer sandwiched between reflective polarizer and light-recycling dichroic filter,” Optics Express, Vol. 21, pp. A765-A773 (2013)
36. Ruibo Lu,Qi Hong, Z. b. Ge, and S. T. Wu, “Color shift reduction of a multi-domain IPS-LCD using RGB-LED backlight,” Optics Express, Vol. 14, pp.6243-6252 (2006)
37. C. G. Son and et al., “Improvement of Color and Luminance Uniformity of the Edge-Lit Backlight Using the RGB LEDs,” Journal of the Optical Society of Korea, Vol. 15, pp.272-277 (2011)
38. Y. J. Wang, J. G. Lu, and H. P. D. Shieh, “A novel highly collimating backlight module using a double wedge-shaped light guide plate,” SID 2102 Digest, pp.1305-1308 (2012)
39. H. K. Jin, “A Color-Filterless LCD with RGB LED and Lenticular-Lens Arrays,” Journal of Information Display, Vol. 11, pp.45-48 (2010)
40. F. C. Lin, Y. P. Huang, C. M. Wei, and H. P. D. Shieh, “Color Filter-Less LCDs in Achieving High Contrast and Low Power Consumption by Stencil Field-Sequential-Color Method,” Journal of Display Technology, Vol. 6, pp.98-106 (2010)
41. F. C. Lin, Y. Zhang, and Erno H A Langendijk, “Color Breakup Suppression by Local Primary Desaturation in Field-Sequential Color LCDs,” Journal of Display Technology, Vol. 7, pp.55-61 (2011)
42. W. H. Steel, “Luminosity, Throughput, or Etendue? Further Comments,” Applied Optics, Vol. 14, pp.252-252 (1975)
43. M. S. Brennesholtz and E. H. Stupp, “ Projection displays,” Wiley 2nd edition, Chapter 11, 271-281.
44. J. W. Goodman, “Speckle phenomena in optics: Theory and applications,” Roberts & Company (2006).
45. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66, 1145-1150 (1976).
46. A. Furukawa et al., “Effective speckle reduction in laser projection displays”, Proc. SPIE 6911, 1-7 (2008).
47. G. M. J. Craggs et al., “Low-speckle laser projection using farfield nonmodal emission of a broad-area vertical-cavity durface-emitting laser,” Proc. SPIE 7720, 1-8 (2010).
48. M. N. Akram, V. Kartashov, and Z. M. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444-446 (2010).
49. T. Iwai and T. Asakura, “Speckle reduction in coherent information processing,“ Proc. IEEE 84, 765-781 (1996).
50. L. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection system by diffractive optical elements,” Appl. Opt. 37, 1770-1775 (1998).
51. L. L. Wang, T. Tschudi, M. Boeddinghaus, A. Elbert, T. Halldorsson, and P. Petursson, “Speckle reduction in laser projections with ultrasonic waves,” Opt. Eng. 39(6), 1659-1664 (2000).
52. M. N. Akram, Z. M. Tong, G. M. Ouyang, X. Y. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49, 3297-3304 (2010).
53. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290-1294 (1976).
54. G. Ouyang, Z. M. Tong, M. N. Akram, K. V. Wang, V. Kartashov, Xin Yan, and X. Y. Chen, “Speckle reduction using a motionless diffractive optical element, “ Opt. Letts. 35, 2852-2854 (2010).
55. L. Golan and S. Shoham, “ Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17, 1330-1339 (2009)
56. P. C. Chen, C. C. Chen, P. H. Yao and C. H. Chen, “Double side lenslet array for illumination optics of laser projector,” Proc. SPIE 7232, 1-9 (2009).
57. S Zhang, “A simple bi-convex refractive laser beam shaper,” J. Opt. A9, 945-950 (2007).
58. F.Wippermann, Uwe-D. Zeitner, P.Dannberg, A.Bräuer, and S.Sinzinger, “Beam homogenizers based on chirped microlens array,” Opt. Express15, 6218-6231 (2007).
59. C.Dorrer and J. D. Zuegel, “Design and analysis of binary beam shapers using error diffusion,” J. Opt. Soc. Am. B24, 1268-1275 (2007).
60. Tasso R. M. Sales, Geoffrey Gretton, G. Michael Morris, and Daniel H. Raguin, “Beam shaping and homogenization with random microlens arrays,” OSA/DOMO 2002, 8-10 (2002).
61. G. Park, Y. Gyu Kim, J. H. Yi, and J. H. Kwon, “Enhancement of the optical performance by optimization of optical sheets in direct-illumination LCD backlight,” J. Opt. Soc. of Korea 13, 152-157 (2009).
62. Z. B. Ge and S. T. Wu, “Nanowire grid polarizer for energy efficient and wide-view liquid crystal displays,”Appl. Phys. Letts. 93, 121104-1 (2008).
63. T. Sergan, M. Lavrentovich, and J. Kelly, “Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers,” J. Opt. Soc. Am. A. 19, 1872-1885 (2002).
64. J. J. Wang, L. Chen, X. M. Liu, P. Sciortino, F. Liu,F. Walters, and X. G Deng, “30-nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Letts. 89, 141105-1 (2006).
65. P. C. Chen and H. L. Kuo, “Color shift improvement in a broadband cholesteric liquid crystal polarizer through computational simulations,” Proc. of SPIE 7050, 705015-1 (2008).
66. L. Li, J. F. Li, B. S. Fan, Y. Q. Jiang, and S. M. Faris, “Reflective cholesteric liquid crystal polarizers and their applications,” Proc. SPIE 3560, 33-40 (1998).
67. Y. Iwamoto and Y. Iimura, “Transmitted light enhancement of electric-field-controlled multidomain vertically aligned liquid crystal displays using circular polarizers and a cholesteric liquid crystal film,”J. J. Appl. Phys. 42, L51-L53 (2003).
68. X. J. Yu and H. S. Kwok, “Optical wire-grid polarizers at oblique angles of incidence,” J. Appl. Phys. 93, 4407-4412(2003).
69. M. Xu, H.P. Urbach, D.K.G de Boer, and H.J. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13, 2303-2320 (2005).
70. S. H. Baik, S. K. Hwang, Y. G. Kim, G. Park, and J. H. Kwon, “Simulation and fabrication of the cone sheet for LCD backlight application,” J. Opt. Soc. of Korea 13, 473-483 (2009).
71. C. F. Lin, Y. B. Fang, and P. H. Yang, “Optimized micro-prism diffusion film for slim-type bottom-lit backlight units,” J. Disp. Tech. 7, 3-9 (2011).
72. J. W. Lee, S. C. Meissner, and R. J. Sudol, “Optical film to enhance cosmetic appearance and brightness in liquid crystal displays,” Opt. Express 15, 8609-8618 (2007).
73. J. H. Lee, H. S. Lee, B. K. Lee, W. S. Choi, H. Y. Choi, and J. B. Yoon, “Simple liquid crystal display backlight unit comprising only a single-sheet micropatterned polydimethylsiloxane (PDMS) light-guide plate,” Opt. Letts. 32, 2665-2667 (2007).
74. S. Aoyama, A. Funamoto, and K. Imanaka, “Hybrid normal-reverse prism coupler for light-emitting diode backlight systems,” Appl. Opt. 45, 7273-7278 (2006).
75. K. Käläntär, “A directional backlight with narrow angular luminance distribution for widening viewing angle of a LCD with a front-surface-light-scattering film,” SID 11 Digest, 890-893 (2011).
76. Born and Wolf, “Principles of optics,” Pergamon, Oxford 4th, 100 (1970).
77. V. C. Ballenegger and T. A. Weber, “The Ewald–Oseen extinction theorem and extinction lengths,” Am. J. Phys. 67, 599-605 (1999).
78. K. Takano, H. Yokoyama, A. Ichii, I. Morimoto, and M. Hangyo, “ Wire-grid polarizer sheet in the terahertz region fabricated by nanoimprint technology,” Opt. Letts. 36, 2665-2667 (2011).
79. T. Jun and A. Masao, "Fabrication of a seamless roll mold by direct writing with an electron beam on a rotating cylindrical substrate," J. Vacuum Science & Technology B 27, 2841-2845 (2009).
80. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids, “ Appl. Phys. Letts. 90, 061104 - 061104-3 (2007).
81. S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography, “ Nanotechnology 16, 1874-1877 (2005).
82. M. Moharam and T. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105-1112 (1983).
83. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466-475 (1956).
84. M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), Chap.14, pp. 705-708.
85. Song Peng and G. Michael Morris, “Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings, “J. Opt. Soc. Am. A 12, 1087-1096 (1995)
86. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions, ” Opt. Express 15, 9510-9519 (2007)
87. X. P. Yang, Y. B. Yan and G. F. Jin, “Polarized light-guide plate for liquid crystal display, “Opt. Express 13, 8349-8356 (2005)
88. L. Chen, J. J. Wang, F. Walters, X. G. Deng, M. Buonanno, S. Tai, and X. M. Liu, “58 nm half-pitch plastic wire-grid polarizer by nanoimprint lithography, “J. Vac. Sci. Technol. B 25, 2654-2657 (2007)
89. L. Zhang, C. F. Li, J. Lia, F. Zhang, L. Shi, “Design and fabrication of metal-wire nanograting used as polarizing beam splitter in optical telecommunication, “J. Optoelectronic and Advanced Materials 8, 847 – 850 (2006)
90. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes, ” Phys. Rev. B 58, 6779-6782 (1998)
91. Anni Lehmuskero, Benfeng Bai, Pasi Vahimaa, and Markku Kuittinen, “Wire-grid polarizers in the volume plasmon region, “ Opt. Express 17, 5481-5489 (2009)
92. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “ Surface plasmon resonance effect in grating diffraction, “ Phys. Rev. Letts. 21, 1530-1533 (1968)