研究生: |
克倫那 Karunakara Moorthy Boopathi |
---|---|
論文名稱: |
新型鹵化金屬材料之光伏應用 Novel Metal Halide Materials for Light Harvesting Applications |
指導教授: |
朱治偉
Chu, Chih-Wei |
口試委員: |
李志浩
Lee, Chih-Hao 林建村 Lin, Jiann-Tsuen 陳錦地 Chen, Chin-Ti 陳方中 Chen, Fang-Chung |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 147 |
外文關鍵詞: | Hybrid solar cell, Hole transport layer, Spray coating, Salt additives, Lead free solar cell, Solution processable |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Harnessing natural energy might be the best approach toward satisfying today’s growing world energy demands, solar energy the undisputed frontrunner among all such sources. Organic solar cells have seen enormous progress over the last two decades because of cheap, light weight, mechanically flexible and large scale production. Polymers or small molecules used in organic solar cell has large bandgap on the order of 2 eV, it limits the solar harnessing potential to <50 % of the total incident solar energy. Organic-inorganic hybrid (OIH) materials are having the combined properties of inorganic semiconductors and organic (polymer or small molecules) materials. OIH solar cells could adopt the merits of inorganic materials, such as stability, enhanced light absorption, high carrier mobility and compatible fabricating process, and utilize the advantages of organics, such as light weight, flexible, adjustable molecular structures for energy band alignment, facile solution processability.
A buffer layer is an important constituent between the electrode and active layer; it plays the crucial role of extracting and transporting the photogenerated carriers (holes or electrons). The use of low-temperature-solution–processable bismuth iodide (BiI3) nanosheets as hole transport layers in organic photovoltaics was demonstrated. The performance of the resulting devices was comparable with that of corresponding conventionally used Polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS).
In order to push perovskite photovoltaic technology to real market, the large area and low material wastage method has to be realized. Study of the perovskite film formation by utilizing new technique is very important. This work demonstrated that the spray deposition is promising technique for fabricating large area perovskite solar cells. The champion device shows PCE of 10.2 % and large area devices with 60 and 342 mm2 achieved the PCE of 6.88 and 4.88%, respectively. To further improve the efficiency, droplet-assisted two-step process of spin coating the lead iodide (PbI2) followed by spray coating the methylammonium iodide (CH3NH3I) was used to prepare continuous lead iodide perovskite film. Power conversion efficiency (PCE) of 11.66% was achieved at 100 nm of PbI2 followed by 300 μl of CH3NH3I and annealed at 100°C for 120 min.
The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives in the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb2+ ions and enhance the crystal growth of PbI2 films, resulting in nanostructured morphologies. The nanostructured PbI2 films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33% from 11.4 to 15.08% and device was more stable.
The major disadvantage of the perovskite (CH3NH3PbI3) is that it contains lead (Pb), which limits the commercialization of this perovskite material due to its toxicity. To overcome this issue, antimony (Sb) based perovskite materials were used for lead free planner perovskite solar cells. Preliminary results shows that, Sb based materials are potential candidate for less toxic, environmental friendly photovoltaic applications.
Harnessing natural energy might be the best approach toward satisfying today’s growing world energy demands, solar energy the undisputed frontrunner among all such sources. Organic solar cells have seen enormous progress over the last two decades because of cheap, light weight, mechanically flexible and large scale production. Polymers or small molecules used in organic solar cell has large bandgap on the order of 2 eV, it limits the solar harnessing potential to <50 % of the total incident solar energy. Organic-inorganic hybrid (OIH) materials are having the combined properties of inorganic semiconductors and organic (polymer or small molecules) materials. OIH solar cells could adopt the merits of inorganic materials, such as stability, enhanced light absorption, high carrier mobility and compatible fabricating process, and utilize the advantages of organics, such as light weight, flexible, adjustable molecular structures for energy band alignment, facile solution processability.
A buffer layer is an important constituent between the electrode and active layer; it plays the crucial role of extracting and transporting the photogenerated carriers (holes or electrons). The use of low-temperature-solution–processable bismuth iodide (BiI3) nanosheets as hole transport layers in organic photovoltaics was demonstrated. The performance of the resulting devices was comparable with that of corresponding conventionally used Polyethylenedioxythiophene:polystyrenesulfonate (PEDOT:PSS).
In order to push perovskite photovoltaic technology to real market, the large area and low material wastage method has to be realized. Study of the perovskite film formation by utilizing new technique is very important. This work demonstrated that the spray deposition is promising technique for fabricating large area perovskite solar cells. The champion device shows PCE of 10.2 % and large area devices with 60 and 342 mm2 achieved the PCE of 6.88 and 4.88%, respectively. To further improve the efficiency, droplet-assisted two-step process of spin coating the lead iodide (PbI2) followed by spray coating the methylammonium iodide (CH3NH3I) was used to prepare continuous lead iodide perovskite film. Power conversion efficiency (PCE) of 11.66% was achieved at 100 nm of PbI2 followed by 300 μl of CH3NH3I and annealed at 100°C for 120 min.
The main issues in planar perovskite solar cells are the coverage and crystallinity of the perovskite film on the PEDOT:PSS layer. To enhance these features, we introduced alkali metal halides (salts) as additives in the perovskite precursor solution used in a two-step preparation method. These alkali metal halides chelate with Pb2+ ions and enhance the crystal growth of PbI2 films, resulting in nanostructured morphologies. The nanostructured PbI2 films promote homogeneous nucleation and larger crystallite sizes, thereby enhancing the morphology and crystallinity of the perovskite films. The alkali metal halides recrystallize the small grains and passivate the grain boundaries and interface states, allowing effective charge generation and dissociation in perovskite films. The power conversion efficiency of the device incorporating a small amount of a salt additive increased by approximately 33% from 11.4 to 15.08% and device was more stable.
The major disadvantage of the perovskite (CH3NH3PbI3) is that it contains lead (Pb), which limits the commercialization of this perovskite material due to its toxicity. To overcome this issue, antimony (Sb) based perovskite materials were used for lead free planner perovskite solar cells. Preliminary results shows that, Sb based materials are potential candidate for less toxic, environmental friendly photovoltaic applications.
[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 47), Progress in Photovoltaics: Research and Applications, 24 (2016) 3-11.
[2] B.R. Saunders, Hybrid polymer/nanoparticle solar cells: Preparation, principles and challenges, Journal of Colloid and Interface Science, 369 (2012) 1-15.
[3] C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, Plastic Solar Cells, Advanced Functional Materials, 11 (2001) 15-26.
[4] M. Wright, A. Uddin, Organic—inorganic hybrid solar cells: A comparative review, Solar Energy Materials and Solar Cells, 107 (2012) 87-111.
[5] C.J. Brabec, S. Gowrisanker, J.J.M. Halls, D. Laird, S. Jia, S.P. Williams, Polymer–Fullerene Bulk-Heterojunction Solar Cells, Advanced Materials, 22 (2010) 3839-3856.
[6] D.E. Markov, C. Tanase, P.W.M. Blom, J. Wildeman, Simultaneous enhancement of charge transport and exciton diffusion in poly($p$-phenylene vinylene) derivatives, Physical Review B, 72 (2005) 045217.
[7] D.E. Markov, E. Amsterdam, P.W.M. Blom, A.B. Sieval, J.C. Hummelen, Accurate Measurement of the Exciton Diffusion Length in a Conjugated Polymer Using a Heterostructure with a Side-Chain Cross-Linked Fullerene Layer, The Journal of Physical Chemistry A, 109 (2005) 5266-5274.
[8] J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Exciton diffusion and dissociation in a poly(p‐phenylenevinylene)/C60 heterojunction photovoltaic cell, Applied Physics Letters, 68 (1996) 3120-3122.
[9] G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions, Science, 270 (1995) 1789-1791.
[10] J.J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature, 376 (1995) 498-500.
[11] R.N. Marks, J.J.M. Halls, D.D.C. Bradley, R.H. Friend, A.B. Holmes, The photovoltaic response in poly(p-phenylene vinylene) thin-film devices, Journal of Physics: Condensed Matter, 6 (1994) 1379.
[12] S. Barth, H. Bässler, Intrinsic Photoconduction in PPV-Type Conjugated Polymers, Physical Review Letters, 79 (1997) 4445-4448.
[13] Carrier transport, Introduction to Semiconductor Physics, WORLD SCIENTIFIC 1999, pp. 77-86.
[14] C.-F. Lin, M. Zhang, S.-W. Liu, T.-L. Chiu, J.-H. Lee, High Photoelectric Conversion Efficiency of Metal Phthalocyanine/Fullerene Heterojunction Photovoltaic Device, International Journal of Molecular Sciences, 12 (2011) 476.
[15] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 45), Progress in Photovoltaics: Research and Applications, 23 (2015) 1-9.
[16] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, Journal of the American Chemical Society, 131 (2009) 6050-6051.
[17] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, M. Grätzel, N.-G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Scientific Reports, 2 (2012) 591.
[18] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, 501 (2013) 395-398.
[19] J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts, Science, 345 (2014) 1593-1596.
[20] Z.-K. Tan, R.S. Moghaddam, M.L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L.M. Pazos, D. Credgington, F. Hanusch, T. Bein, H.J. Snaith, R.H. Friend, Bright light-emitting diodes based on organometal halide perovskite, Nat Nano, 9 (2014) 687-692.
[21] Y.-H. Kim, H. Cho, J.H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S.H. Im, T.-W. Lee, Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes, Advanced Materials, 27 (2015) 1248-1254.
[22] F. Deschler, M. Price, S. Pathak, L.E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S.D. Stranks, H.J. Snaith, M. Atatüre, R.T. Phillips, R.H. Friend, High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors, The Journal of Physical Chemistry Letters, 5 (2014) 1421-1426.
[23] B.R. Sutherland, S. Hoogland, M.M. Adachi, C.T.O. Wong, E.H. Sargent, Conformal Organohalide Perovskites Enable Lasing on Spherical Resonators, ACS Nano, 8 (2014) 10947-10952.
[24] Q. Zhang, S.T. Ha, X. Liu, T.C. Sum, Q. Xiong, Room-Temperature Near-Infrared High-Q Perovskite Whispering-Gallery Planar Nanolasers, Nano Letters, 14 (2014) 5995-6001.
[25] Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W.J. Yoo, J.-H. Ahn, J.H. Park, J.H. Cho, High-Performance Perovskite–Graphene Hybrid Photodetector, Advanced Materials, 27 (2015) 41-46.
[26] L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang, G. Li, Y. Yang, Solution-processed hybrid perovskite photodetectors with high detectivity, Nat Commun, 5 (2014) doi:10.1038/ncomms6404.
[27] K. Leo, Perovskite photovoltaics: Signs of stability, Nat Nano, 10 (2015) 574-575.
[28] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3 (2011) 4088-4093.
[29] B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (1991) 737-740.
[30] W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.-B. Cheng, L. Han, Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells, Energy & Environmental Science, 8 (2015) 629-640.
[31] K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E.W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen, p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells, Scientific Reports, 4 (2014) 4756.
[32] J.H. Heo, S.H. Im, J.H. Noh, T.N. Mandal, C.-S. Lim, J.A. Chang, Y.H. Lee, H.-j. Kim, A. Sarkar, K. NazeeruddinMd, M. Gratzel, S.I. Seok, Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat Photon, 7 (2013) 486-491.
[33] J.J. Choi, X. Yang, Z.M. Norman, S.J.L. Billinge, J.S. Owen, Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells, Nano Letters, 14 (2014) 127-133.
[34] T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells, Nat Commun, 4 (2013) doi:10.1038/ncomms3885.
[35] T. Leijtens, B. Lauber, G.E. Eperon, S.D. Stranks, H.J. Snaith, The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells, The Journal of Physical Chemistry Letters, 5 (2014) 1096-1102.
[36] G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells, Advanced Functional Materials, 24 (2014) 151-157.
[37] W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348 (2015) 1234-1237.
[38] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, D. Cahen, Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor), Nano Letters, 14 (2014) 1000-1004.
[39] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells, Science, 345 (2014) 542-546.
[40] O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Perovskite solar cells employing organic charge-transport layers, Nat Photon, 8 (2014) 128-132.
[41] Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang, J. Huang, Abnormal crystal growth in CH3NH3PbI3-xClx using a multi-cycle solution coating process, Energy & Environmental Science, 8 (2015) 2464-2470.
[42] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers, Science, 350 (2015) 944-948.
[43] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco, Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat Nano, 11 (2016) 75-81.
[44] J.H. Park, J. Seo, S. Park, S.S. Shin, Y.C. Kim, N.J. Jeon, H.-W. Shin, T.K. Ahn, J.H. Noh, S.C. Yoon, C.S. Hwang, S.I. Seok, Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition, Advanced Materials, 27 (2015) 4013-4019.
[45] Y. Zhao, K. Zhu, Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 5 (2014) 4175-4186.
[46] S.D. Stranks, H.J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting devices, Nat Nano, 10 (2015) 391-402.
[47] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells, Nat Mater, 13 (2014) 897-903.
[48] W. Li, J. Fan, J. Li, Y. Mai, L. Wang, Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%, Journal of the American Chemical Society, 137 (2015) 10399-10405.
[49] Y. Zhao, K. Zhu, Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH3NH3PbI2Br Nanosheets via Thermal Decomposition, Journal of the American Chemical Society, 136 (2014) 12241-12244.
[50] J.H. Heo, D.H. Song, H.J. Han, S.Y. Kim, J.H. Kim, D. Kim, H.W. Shin, T.K. Ahn, C. Wolf, T.-W. Lee, S.H. Im, Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate, Advanced Materials, 27 (2015) 3424-3430.
[51] H. Tsai, W. Nie, P. Cheruku, N.H. Mack, P. Xu, G. Gupta, A.D. Mohite, H.-L. Wang, Optimizing Composition and Morphology for Large-Grain Perovskite Solar Cells via Chemical Control, Chemistry of Materials, 27 (2015) 5570-5576.
[52] Y. Chen, Y. Zhao, Z. Liang, Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl, Chemistry of Materials, 27 (2015) 1448-1451.
[53] J.H. Heo, D.H. Song, S.H. Im, Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin-Coating Process, Advanced Materials, 26 (2014) 8179-8183.
[54] P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S.T. Williams, X.-K. Xin, J. Lin, A.K.Y. Jen, Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells, Advanced Materials, 26 (2014) 3748-3754.
[55] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability, Science, 345 (2014) 295-298.
[56] X. Li, M. Ibrahim Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides, Nat Chem, 7 (2015) 703-711.
[57] Y.C. Zheng, S. Yang, X. Chen, Y. Chen, Y. Hou, H.G. Yang, Thermal-Induced Volmer–Weber Growth Behavior for Planar Heterojunction Perovskites Solar Cells, Chemistry of Materials, 27 (2015) 5116-5121.
[58] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.-L. Wang, A.D. Mohite, High-efficiency solution-processed perovskite solar cells with millimeter-scale grains, Science, 347 (2015) 522-525.
[59] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, L. Spiccia, A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells, Angewandte Chemie International Edition, 53 (2014) 9898-9903.
[60] J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells, Nano Letters, 13 (2013) 1764-1769.
[61] G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy & Environmental Science, 7 (2014) 982-988.
[62] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting, Angewandte Chemie International Edition, 53 (2014) 3151-3157.
[63] N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, H.J. Snaith, Lead-free organic-inorganic tin halide perovskites for photovoltaic applications, Energy & Environmental Science, 7 (2014) 3061-3068.
[64] F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nat Photon, 8 (2014) 489-494.
[65] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm, The Journal of Physical Chemistry Letters, 5 (2014) 1004-1011.
[66] R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, M.T. Hörantner, M.B. Johnston, A.A. Haghighirad, D.T. Moore, H.J. Snaith, Bandgap-Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells, Advanced Energy Materials, 6 (2016) 1502458.
[67] S.N. Habisreutinger, T. Leijtens, G.E. Eperon, S.D. Stranks, R.J. Nicholas, H.J. Snaith, Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells, Nano Letters, 14 (2014) 5561-5568.
[68] Z. Song, S.C. Watthage, A.B. Phillips, G.K. Liyanage, R.R. Khanal, B.L. Tompkins, R.J. Ellingson, M.J. Heben, Investigation of degradation mechanisms of perovskite-based photovoltaic devices using laser beam induced current mapping, 2015, 956107-956108.
[69] X. Li, M. Tschumi, H. Han, S.S. Babkair, R.A. Alzubaydi, A.A. Ansari, S.S. Habib, M.K. Nazeeruddin, S.M. Zakeeruddin, M. Grätzel, Outdoor Performance and Stability under Elevated Temperatures and Long-Term Light Soaking of Triple-Layer Mesoporous Perovskite Photovoltaics, Energy Technology, 3 (2015) 551-555.
[70] H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 5 (2014) 1511-1515.
[71] E.L. Unger, E.T. Hoke, C.D. Bailie, W.H. Nguyen, A.R. Bowring, T. Heumuller, M.G. Christoforo, M.D. McGehee, Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells, Energy & Environmental Science, 7 (2014) 3690-3698.
[72] J. Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao, D. Yu, Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 5 (2014) 3937-3945.
[73] J.M. Frost, K.T. Butler, A. Walsh, Molecular ferroelectric contributions to anomalous hysteresis in hybrid perovskite solar cells, APL Mater., 2 (2014) 081506.
[74] V.W. Bergmann, S.A.L. Weber, F. Javier Ramos, M.K. Nazeeruddin, M. Grätzel, D. Li, A.L. Domanski, I. Lieberwirth, S. Ahmad, R. Berger, Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell, Nat Commun, 5 (2014) doi:10.1038/ncomms6001.
[75] S. van Reenen, M. Kemerink, H.J. Snaith, Modeling Anomalous Hysteresis in Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 6 (2015) 3808-3814.
[76] J. Gong, S.B. Darling, F. You, Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts, Energy & Environmental Science, 8 (2015) 1953-1968.
[77] N. Espinosa, L. Serrano-Luján, A. Urbina, F.C. Krebs, Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective, Solar Energy Materials and Solar Cells, 137 (2015) 303-310.
[78] B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, Rain on Methylammonium Lead Iodide Based Perovskites: Possible Environmental Effects of Perovskite Solar Cells, The Journal of Physical Chemistry Letters, 6 (2015) 1543-1547.
[79] P.-Y. Chen, J. Qi, M.T. Klug, X. Dang, P.T. Hammond, A.M. Belcher, Environmentally responsible fabrication of efficient perovskite solar cells from recycled car batteries, Energy & Environmental Science, 7 (2014) 3659-3665.
[80] C.-C. Chen, L. Dou, R. Zhu, C.-H. Chung, T.-B. Song, Y. B. Zheng, S. Hawks, G. Li, P. S. Weiss, Y. Yang, Visibly transparent polymer solar cells produced by solution processing, ACS Nano 6 (8) (2012) 7185–7190.
[81] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Plastic solar cells, Adv. Funct. Mater. 11 (1) (2001) 15–26.
[82] R. Zhu, C.-H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T.-B. Song, C.-C. Chen, P. S. Weiss, G. Li, Y. Yang, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors, ACS Nano 5 (12) (2011) 9877–9882.
[83] F. C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen, J. Kristensen, A complete process for production of flexible large area polymer solar cells entirely using screen printing: First public demonstration, Sol. Energ. Mat. Sol. Cells 93 (4) (2009) 422–441.
[84] F. C. Krebs, Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes, Sol. Energ. Mat. Sol. Cells 92 (7) (2008) 715–726.
[85] S.-I. Na, B.-K. Yu, S.-S. Kim, D. Vak, T.-S. Kim, J.-S. Yeo, D.-Y. Kim, Fully spray coated ITO-free organic solar cells for low-cost power generation, Sol. Energ. Mat. Sol. Cells 94 (8) (2010) 1333–1337.
[86] G. Dennler, M. C. Scharber, C. J. Brabec, Polymer-fullerene bulk heterojunction solar cells, Adv. Mater. 21 (13) (2009) 1323–1338.
[87] B. C. Thompson, J. M. Frechet, Polymer-fullerene composite solar cells, Angew. Chem. Int. Ed. 47 (1) (2008) 58–77.
[88] R. Po, C. Carbonera, A. Bernardi, N. Camaioni, The role of buffer layers in polymer solar cells, Energy Environ. Sci. 4 (2011) 285–310.
[89] S. Chen, J. R. Manders, S.-W. Tsang, F. So, Metal oxides for interface engineering in polymer solar cells, J. Mater. Chem. 22 (2012) 24202–24212.
[90] R. Steim, F. R. Kogler, C. J. Brabec, Interface materials for organic solar cells, J. Mater. Chem. 20 (2010) 2499–2512.
[91] S. H. Eom, S. Senthilarasu, P. Uthirakumar, S. C. Yoon, J. Lim, C. Lee, H. S. Lim, J. Lee, S.-H. Lee, Polymer solar cells based on inkjet-printed PEDOT:PSS layer, Org. Electron. 10 (3) (2009) 536–542.
[92] B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, N. C. Greenham, Effects of layer thickness and annealing of PEDOT:PSS layers in organic photodetectors, Macromolecules 42 (17) (2009) 6741–6747.
[93] H.-Y. Wei, J.-H. Huang, C.-Y. Hsu, F.-C. Chang, K.-C. Ho, C.-W. Chu, Organic solar cells featuring nanobowl structures, Energy Environ. Sci. 6 (2013) 1192–1198.
[94] D. Alemu, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy Environ. Sci. 5 (2012) 9662–9671.
[95] M. P. de Jong, L. J. van IJzendoorn, M. J. A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes, Appl. Phys. Lett. 77 (14) (2000) 2255–2257.
[96] T. Nguyen, S. de Vos, An investigation into the effect of chemical and thermal treatments on the structural changes of poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate and consequences on its use on indium tin oxide substrates, Appl. Surf. Sci. 221 (2004) 330–339.
[97] T. Stubhan, N. Li, N. A. Luechinger, S. C. Halim, G. J. Matt, C. J. Brabec, High fill factor polymer solar cells incorporating a low temperature solution processed WO3 hole extraction layer, Adv. Energy Mater. 2 (12) (2012) 1433–1438.
[98] N. Li, T. Stubhan, N. A. Luechinger, S. C. Halim, G. J. Matt, T. Ameri, C. J. Brabec, Inverted structure organic photovoltaic devices employing a low temperature solution processed WO3 anode buffer layer, Org. Electron.13 (11) (2012) 2479–2484.
[99] J.-H. Huang, T.-Y. Huang, H.-Y.Wei, K.-C. Ho, C.-W. Chu, Wet-milled transition metal oxide nanoparticles as buffer layers for bulk heterojunction solar cells, RSC Adv. 2 (2012) 7487–7491.
[100] S. Murase, Y. Yang, Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method, Adv. Mater. 24 (18) (2012) 2459–2462.
[101] Y.-J. Lee, J. Yi, G. F. Gao, H. Koerner, K. Park, J. Wang, K. Luo, R. A. Vaia, J. W. P. Hsu, Low-temperature solution-processed molybdenum oxide nanoparticle hole transport layers for organic photovoltaic devices, Adv. Energy Mater. 2 (10) (2012) 1193–1197.
[102] E. L. Ratcliff, J. Meyer, K. X. Steirer, A. Garcia, J. J. Berry, D. S. Ginley, D. C. Olson, A. Kahn, N. R. Armstrong, Evidence for near surface NiOOH species in solution-processed NiOx selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics, Chem. Mater. 23 (22) (2011) 4988–5000.
[103] C. Gong, H. B. Yang, Q. L. Song, C. M. Li, Nanostructure effect of V2O5 buffer layer on performance of polymer-fullerene devices, Org. Electron. 13 (1) (2012) 7–12.
[104] J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, S.-I. Na, Solution-processable reduced graphene oxide as a novel alternative to PEDOT:PSS hole transport layers for highly efficient and stable polymer solar cells, Adv. Mater. 23 (42) (2011) 4923–4928.
[105] J. Liu, Y. Xue, Y. Gao, D. Yu, M. Durstock, L. Dai, Hole and electron extraction layers based on graphene oxide derivatives for high performance bulk heterojunction solar cells, Adv. Mater. 24 (17) (2012) 2228–2233.
[106] E. Lifshitz, L. Bykov, Continuous-wave, microwave-modulated, and thermal-modulated photoluminescence studies of the BiI3 layered semiconductor, J. Phys. Chem. 99 (14) (1995) 4894–4899.
[107] J. Bordas, J. Robertson, A. Jakobsson, Ultraviolet properties and band structure of SnS2, SnSe2, CdI2, PbI2, BiI3 and BiOI crystals, J. Phys. C: Solid State Phys. 11 (12) 2607–2621.
[108] G. E. Jellison, J. O. Ramey, L. A. Boatner, Optical functions of BiI3 as measured by generalized ellipsometry, Phys. Rev. B 59 (1999) 9718–9721.
[109] H. Yorikawa, S. Muramatsu, Theoretical study of crystal and electronic structures of BiI3, J. Phys.: Condens. Matter 20 (32) (2008) 325220.
[110] D. Nason, L. Keller, The growth and crystallography of bismuth triiodide crystals grown by vapor transport, J. Cryst. Growth 156 (3) (1995) 221–226.
[111] A. T. Lintereur, W. Qiu, J. C. Nino, J. E. Baciak, Bismuth tri-iodide radiation detector development, Proc. SPIE 7449 (2009) 74491M_1–74491M_7.
[112] V. Agekyan, Growth and optical properties of BiI3 and PbI2 microcrystals, Phys. Solid State 40 (9) (1998) 1568–1573.
[113] X.-X. Sun, Y.-L. Li, G.-H. Zhong, H.-P. Lu, Z. Zeng, The structural, elastic and electronic properties of BiI3: First-principles calculations, Physica B 407 (4) (2012) 735–739.
[114] M. A. Ibrahem, H.-Y. Wei, M.-H. Tsai, K.-C. Ho, J.-J. Shyue, C. W. Chu, Solution-processed zinc oxide nanoparticles as interlayer materials for inverted organic solar cells, Sol. Energy Mater. Sol. Cells 108 (2013) 156–163.
[115] A. Matsumoto, K. Hitomi, T. Shoji, Y. Hiratate, Bismuth iodide (III) crystals for nuclear radiation detectors, in: Nuclear Science Symposium Conference Record, 2001 IEEE, Vol. 4, 2001, pp. 2344–2347.
[116] Y. Kaifu, Excitons in layered BiI3 single crystals, J. Lumin. 42 (2) (1988) 61–81.
[117] T. Karasawa, T. Kawai, I. Akai, Y. Kaifu, Observation of highly mobile exciton along the stacking fault plane in BiI3 by space-resolved spectroscopy, J. Lumin. 40–41 (0) (1988) 431–432.
[118] M. Grätzel, R. A. J. Janssen, D. B. Mitzi, E. H. Sargent, Materials interface engineering for solution-processed photovoltaics, Nature, 488, (2012) , 304-312 .
[119] F. C. Krebs, Fabrication and processing of polymer solar cells: A review of printing and coating techniques, Sol. Energy Mater. Sol. Cells, 93, (2009), 394-412.
[120] D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov, D. B. Mitzi, Prog. Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell, Photovoltaics: Res. Appl., 20, (2012), 6-11.
[121] T. K. Todorov, O. Gunawan, T. Gokmen, D. B. Mitzi, Solution-processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell, Prog. Photovoltaics: Res. Appl., 21, (2013), 82-87.
[122] N. Li, D. Baran, K. Forberich, F. Machui, T. Ameri, M. Turbiez, M. Carrasco-Orozco, M. Drees, A. Facchetti, F- C. Krebs and C- J. Brabec. Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials, Energy Environ. Sci., 6, (2013), 3407-3413.
[123] R. F. Service, Solar energy. Outlook brightens for plastic solar cells, Science, 332, (2011), 293.
[124] H. J. Snaith, Estimating the Maximum Attainable Efficiency in Dye-Sensitized Solar Cells, Adv. Funct. Mater., 20, (2010), 13-19.
[125] F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. Humphry-Baker, P. Wang, S-M. Zakeeruddin and M. Grätzel, A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell, Chem. Commun., (2008), 2635-2637.
[126] S-D. Stranks, G-E. Eperon, G. Grancini, C. Menelaou, M-J. P. Alcocer, T. Leijtens, L- M. Herz, A. Petrozza, and H-J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, (2013), 342, 341–344.
[127] W. A. Laban and L. Etgar, Depleted hole conductor-free lead halide iodide heterojunction solar cells, Energy Environ. Sci., 6, (2013), 3249-3253.
[128] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin and M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells, J. Am. Chem. Soc., 134, (2012), 17396-17399.
[129] J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. Lim, J. A. Chang, Y. H. Lee, H. Kim, A. Sarkar, K. NazeeruddinMd., M. Grätzel and S. I. Seok, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors, Nat. Photonics, 7, (2013), 486-491.
[130] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites Science, 338, (2012), 643-647.
[131] J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Low-temperature processed meso-superstructured to thin-film perovskite solar cells, Energy Environ. Sci., 6, (2013), 1739-1743.
[132] S. Ito, S. Tanaka, K. Manabe, and H. Nishino, Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells, J. Phys. Chem. C., 116(30), (2014), 16995-17000.
[133] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen and T. C. Wen, CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells, Adv. Mater., 25, (2013), 3727-3732.
[134] S. Y. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum and Y. M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells, Energy Environ. Sci., 7, (2014), 399-407.
[135] J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility, ACS Nano, 8, (2014), 1674-1680.
[136] J.J. Licari, Coating Materials for Electronic Applications—Polymers, Processes, Reliability, Testing, Noyes Publications/William Andrew, Inc., New York, 2003
[137] A-T. Barrows, A-J. Pearson, C. Kwak, A-D.F. Dunbar, A-R. Buckley, and D-G. Lidzey, Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition Energy Environ. Sci., 7, (2014), 2944-2950,
[138] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y, uan, and J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process, Energy Environ. Sci., 7, (2014), 2359.
[139] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy & Environmental Science, 7 (2014) 2619-2623.
[140] M-D. Perez, C. Borek, S-R. Forrest and M-E. Thompson, Molecular and Morphological Influences on the Open Circuit Voltages of Organic Photovoltaic Devices, J. Am. Chem. Soc., 131, (2009), 9281–9286.
[141] C. V. Thompson, Solid-State Dewetting of Thin Films, Ann. Rev. Mater. Res., 42, (2012), 399-434.
[142] G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, T.C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Science, 342 (2013) 344-347.
[143] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells, Nat Nano, 9, (2014), 927-932.
[144] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H.J. Snaith, Sub-150 degrees C processed meso-superstructured perovskite solar cells with enhanced efficiency, Energ Environ Sci, 7 (2014) 1142-1147.
[145] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Gratzel, Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency, Nat Commun, 5 (2014) 1-6.
[146] J.Y. Jeng, K.C. Chen, T.Y. Chiang, P.Y. Lin, T.D. Tsai, Y.C. Chang, T.F. Guo, P. Chen, T.C. Wen, Y.J. Hsu, Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells, Adv Mater, 26 (2014) 4107-4113.
[147] P. Docampo, F. Hanusch, S.D. Stranks, M. Döblinger, J.M. Feckl, M. Ehrensperger, N.K. Minar, M.B. Johnston, H.J. Snaith, T. Bein, Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells, Advanced Energy Materials, 4 (2014) 1400355.
[148] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, J Am Chem Soc, 136 (2013) 622-625.
[149] D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques, Nat Photon, 8 (2014) 133-138.
[150] O. Malinkiewicz, C. Roldán-Carmona, A. Soriano, E. Bandiello, L. Camacho, M.K. Nazeeruddin, H.J. Bolink, Metal-Oxide-Free Methylammonium Lead Iodide Perovskite-Based Solar Cells: the Influence of Organic Charge Transport Layers, Advanced Energy Materials, 4 (2014) 1400345.
[151] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, H.-W. Lin, Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition, Adv Mater, 26 (2014) 6647-6652.
[152] J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499 (2013) 316-319.
[153] J.H. Kim, S.T. Williams, N. Cho, C.-C. Chueh, A.K.Y. Jen, Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating, Advanced Energy Materials, 5 (2014) 1401229.
[154] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement, Adv Mater, 8 (2014) 6503-6509.
[155] Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition, Energ Environ Sci, 7 (2014) 2934-2938.
[156] L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, Y. Yang, 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research, Adv Mater, 25 (2013) 6642-6671.
[157] J. Seo, S. Park, Y. Chan Kim, N.J. Jeon, J.H. Noh, S.C. Yoon, S.I. Seok, Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells, Energ Environ Sci, 7 (2014) 2642-2646.
[158] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Grätzel, Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid-State Solar Cells, Advanced Functional Materials, 24 (2014) 3250-3258.
[159] C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, J. Huang, Understanding the Formation and Evolution of Interdiffusion Grown Organolead Halide Perovskite Thin Films by Thermal Annealing, Journal of Materials Chemistry A, 2 (2014) 18508-18514.
[160] Y. Shao, Z. Xiao, C. Bi, Y. Yuan and J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat Commun, 5 (2014) 5784.
[161] R. Scheer and H.-W. Schock, Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices, Wiley-VCH Verlag GmbH & Co. KGaA, 2011.
[162] H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.G. Park, High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer, Nano Lett, 13 (2013) 2412-2417.
[163] E. Della Gaspera, Y. Peng, Q. Hou, L. Spiccia, U. Bach, J.J. Jasieniak, Y.-B. Cheng, Ultra-thin high efficiency semitransparent perovskite solar cells, Nano Energy, 13 (2015) 249-257.
[164] Z. Yang, B. Cai, B. Zhou, T. Yao, W. Yu, S. Liu, W.-H. Zhang, C. Li, An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells, Nano Energy, 15 (2015) 670-678.
[165] O.A. Jaramillo-Quintero, R.S. Sanchez, M. Rincon, I. Mora-Sero, Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer, The Journal of Physical Chemistry Letters, 6 (2015) 1883-1890.
[166] G. Li, Z.-K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.-W. Lim, R.H. Friend, N.C. Greenham, Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix, Nano Lett, 15 (2015) 2640-2644.
[167] G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.C. Sum, Low-temperature solution-processed wavelength-tunable perovskites for lasing, Nat Mater, 13 (2014) 476-480.
[168] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X.Y. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat Mater, 14 (2015) 636-642.
[169] V. Gonzalez-Pedro, E.J. Juarez-Perez, W.S. Arsyad, E.M. Barea, F. Fabregat-Santiago, I. Mora-Sero, J. Bisquert, General Working Principles of CH3NH3PbX3 Perovskite Solar Cells, Nano Lett, 14 (2014) 888-893.
[170] Y.-J. Jeon, S. Lee, R. Kang, J.-E. Kim, J.-S. Yeo, S.-H. Lee, S.-S. Kim, J.-M. Yun, D.-Y. Kim, Planar heterojunction perovskite solar cells with superior reproducibility, Sci. Rep., 4 (2014) 6953.
[171] L. Zhu, J. Shi, S. Lv, Y. Yang, X. Xu, Y. Xu, J. Xiao, H. Wu, Y. Luo, D. Li, Q. Meng, Temperature-assisted controlling morphology and charge transport property for highly efficient perovskite solar cells, Nano Energy, 15 (2015) 540-548.
[172] K.M. Boopathi, M. Ramesh, P. Perumal, Y.-C. Huang, C.-S. Tsao, Y.-F. Chen, C.-H. Lee, C.-W. Chu, Preparation of metal halide perovskite solar cells through a liquid droplet assisted method, Journal of Materials Chemistry A, 3 (2015) 9257-9263.
[173] M. Ramesh, K.M. Boopathi, T.-Y. Huang, Y.-C. Huang, C.-S. Tsao, C.-W. Chu, Using an Airbrush Pen for Layer-by-Layer Growth of Continuous Perovskite Thin Films for Hybrid Solar Cells, ACS Applied Materials & Interfaces, 7 (2015) 2359-2366.
[174] H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J.Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy, 7 (2014) 80-85.
[175] C. Zuo, L. Ding, An 80.11% FF record achieved for perovskite solar cells by using the NH4Cl additive, Nanoscale, 6 (2014) 9935-9938.
[176] C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, C.-Y. Chao, W.-F. Su, Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell, ACS Applied Materials & Interfaces, 7 (2015) 4955-4961.
[177] C.-C. Chueh, C.-Y. Liao, F. Zuo, S.T. Williams, P.-W. Liang, A.K.Y. Jen, The roles of alkyl halide additives in enhancing perovskite solar cell performance, Journal of Materials Chemistry A, 3 (2015) 9058-9062.
[178] X. Song, W. Wang, P. Sun, W. Ma, Z.-K. Chen, Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells, Applied Physics Letters, 106 (2015) 033901.
[179] F. Wang, H. Yu, H. Xu, N. Zhao, HPbI3: A New Precursor Compound for Highly Efficient Solution-Processed Perovskite Solar Cells, Advanced Functional Materials, 25 (2015) 1120-1126.
[180] L. Yang, J. Wang, W.W.-F. Leung, Lead iodide thin film crystallization control for high-performance and stable solution-processed perovskite solar cells, ACS Applied Materials & Interfaces, 7 (2015) 14614-14619.
[181] J.D. Major, R.E. Treharne, L.J. Phillips, K. Durose, A low-cost non-toxic post-growth activation step for CdTe solar cells, Nature, 511 (2014) 334-337.
[182] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A.R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, A.N. Tiwari, Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells, Nat Mater, 12 (2013) 1107-1111.
[183] H. Yu, F. Wang, F. Xie, W. Li, J. Chen, N. Zhao, The Role of Chlorine in the Formation Process of “CH3NH3PbI3-xClx” Perovskite, Advanced Functional Materials, 24 (2014) 7102-7108.
[184] M. Saliba, S. Orlandi, T. Matsui, S. Aghazada, M. Cavazzini, J.-P. Correa-Baena, P. Gao, R. Scopelliti, E. Mosconi, K.-H. Dahmen, F. De Angelis, A. Abate, A. Hagfeldt, G. Pozzi, M. Graetzel, M.K. Nazeeruddin, A molecularly engineered hole-transporting material for efficient perovskite solar cells, Nature Energy, 1 (2016) 15017.
[185] D.B. Mitzi, Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials, Progress in Inorganic Chemistry, John Wiley & Sons, Inc.2007, 1-121.
[186] Y. Wang, Y. Zhang, P. Zhang, W. Zhang, High intrinsic carrier mobility and photon absorption in the perovskite CH3NH3PbI3, Physical Chemistry Chemical Physics, 17 (2015) 11516-11520.
[187] Y.-H. Kim, H. Cho, J.H. Heo, T.-S. Kim, N. Myoung, C.-L. Lee, S.H. Im, T.-W. Lee, Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes, Advanced Materials, 27 (2015) 1248-1254.
[188] G. Li, Z.-K. Tan, D. Di, M.L. Lai, L. Jiang, J.H.-W. Lim, R.H. Friend, N.C. Greenham, Efficient Light-Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix, Nano Letters, 15 (2015) 2640-2644.
[189] X.Y. Chin, D. Cortecchia, J. Yin, A. Bruno, C. Soci, Lead iodide perovskite light-emitting field-effect transistor, Nat Commun, 6 (2015) 7383.
[190] Y. Mei, C. Zhang, Z.V. Vardeny, O.D. Jurchescu, Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature, MRS Communications, 5 (2015) 297-301.
[191] Y. Guo, C. Liu, H. Tanaka, E. Nakamura, Air-Stable and Solution-Processable Perovskite Photodetectors for Solar-Blind UV and Visible Light, The Journal of Physical Chemistry Letters, 6 (2015) 535-539.
[192] K.M. Boopathi, R. Mohan, T.-Y. Huang, W. Budiawan, M.-Y. Lin, C.-H. Lee, K.-C. Ho, C.-W. Chu, Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives, Journal of Materials Chemistry A, 4 (2016) 1591-1597.
[193] F. Zuo, S.T. Williams, P.-W. Liang, C.-C. Chueh, C.-Y. Liao, A.K.Y. Jen, Binary-Metal Perovskites Toward High-Performance Planar-Heterojunction Hybrid Solar Cells, Advanced Materials, 26 (2014) 6454-6460.
[194] M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, N. Mathews, Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation, Advanced Materials, 26 (2014) 7122-7127.
[195] S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S.I. Seok, Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex, Journal of the American Chemical Society, 138 (2016) 3974-3977.
[196] L. Serrano-Lujan, N. Espinosa, T.T. Larsen-Olsen, J. Abad, A. Urbina, F.C. Krebs, Tin- and Lead-Based Perovskite Solar Cells under Scrutiny: An Environmental Perspective, Advanced Energy Materials, 5 (2015) DOI: 10.1002/aenm.201501119.
[197] T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications, Journal of Materials Chemistry A, 3 (2015) 23829-23832.
[198] D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, N. Mathews, Lead-Free MA2CuClxBr4–x Hybrid Perovskites, Inorganic Chemistry, 55 (2016) 1044-1052.
[199] B.-W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application, Advanced Materials, 27 (2015) 6806-6813.
[200] Y.C. Choi, Y.H. Lee, S.H. Im, J.H. Noh, T.N. Mandal, W.S. Yang, S.I. Seok, Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers, Advanced Energy Materials, 4 (2014) DOI: 10.1002/aenm.201301680.
[201] V.M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften, 14 (1926) 477-485.
[202] G. Kieslich, S. Sun, A.K. Cheetham, Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog, Chemical Science, 5 (2014) 4712-4715.
[203] I. Borriello, G. Cantele, D. Ninno, Investigation of hybrid organic-inorganic perovskites based on tin halides, Physical Review B, 77 (2008) 235214.
[204] S. Meloni, T. Moehl, W. Tress, M. Franckevicius, M. Saliba, Y.H. Lee, P. Gao, M.K. Nazeeruddin, S.M. Zakeeruddin, U. Rothlisberger, M. Graetzel, Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells, Nat Commun, 7 (2016) doi:10.1038/ncomms10334.
[205] H.-S. Kim, N.-G. Park, Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer, The Journal of Physical Chemistry Letters, 5 (2014) 2927-2934.