研究生: |
劉宗麟 Chung-Lin Liu |
---|---|
論文名稱: |
模擬質子交換膜燃料電池陰極水蒸汽冷凝雙相流現象實驗探討 Simulated Two-Phase Flow Study of Steam Condensation in the Cathode of PEMFC |
指導教授: |
潘欽
Chin Pan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 燃料電池 、水管理 、氣體擴散 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
I
摘要
質子交換膜燃料電池(Proton exchange membrane fuel cell)
運作時會在陰極生成水蒸汽,水蒸汽可能會冷凝在氣體擴散層(Gas
diffusion layer)、觸媒層(Catalyst layer)、和陰極流道(Cathode
flow channel),而阻礙陰極氣體進入產生反應,降低電池的效率。
本研究利用水蒸汽和乾燥空氣來模擬PEMFC 陰極端迷你流道中雙相
流的傳輸現象,以期了解水蒸汽在擴散層與流道的機制。
研究分為兩個部分,第一部分使用相同蒸汽量通過四種不同氣體
擴散層(Toray paper 060、Carbon cloth(no treated)、HT2500、ELAT
V2.1)觀察蒸汽冷凝在擴散層與冷凝形成之液珠成長與背壓之關係。
結果顯示,氣體擴散層(GDL)其滲透率(permeability)越低,其冷凝
液珠所需移除的背壓也越高;而疏水性越高的氣體擴散層,冷凝液珠
小且接觸角大,疏水性低的氣體擴散層冷凝面積大且接觸角較小。
第二部分則加入迷你壓克力矩形流道,並控制蒸汽流量和空氣流
量比率,模擬PEMFC 陰極流道雙相流傳輸現象。本研究探討蒸汽對應
於PEMFC 在電流密度為3.52A/cm2、10.7A/cm2、17.6A/cm2及不同當量
的空氣流量下,流道內的雙相流與壓降。研究結果顯示,在這些操作
條件下,水仍絕大部分以蒸汽方式離開,而沒有觀察到擴散層因水滿
溢而有液珠長出的現象;反而流道間(rib)因壓克力較親水且空氣不
II
易進入,會使水從流道間的擴散層處滿溢進流道。若使用較疏水的
GDL,由流道間滿溢進的水較易隨空氣流動而排除,而較親水的GDL
其流道間滿溢入的水不易移除且可能會在流道上面形成一層液膜。
104
參考文獻
[1] 陳振源,"科學發展",391 期,頁62-65,7 月號,2005
[2] 衣寶廉,"燃料電池-高效、環保的發電方式",頁2-5,五南
圖書,2003
[3] 黃鎮江,"燃料電池",全華科技圖書股份有限公司,2003
[4] 蔡克群,"燃料電池導論",化工技術,第10卷第6期,頁122-131
,2002。
[5] 鄭耀宗、萬瑞霙,"各種燃料電池技術的進展分析",台電工程
月刊,第601 期,頁80-90,1998。
[6] 賴耿陽,"燃料電池與電力儲存系統",復漢出版社,1998。
[7] 鄭耀宗、徐耀昇,"燃料電池技術進展的現況分析",八十八年
節約能源論文發表會論文專輯,頁409-422,1999。
[8] 楊志忠、林頌恩、韋文誠,"燃料電池發展現況",科學發展第
367 期,2003 年7 月。
[9] W.K. Lee, C.H. Ho, J.W. Van Zee, M. Murthy," The effects
of compression and gas diffusion layers on the performance
of a PEM fuel cell", Journal of Power Sources,
Vol.84,pp.45-51,1999
[10] 張貴松、田中秀治、黃炳照,"日本小型/微型燃料電池的開發
105
現況及展望,"化工技術,第11 卷第4 期,頁260-270,2003。
[11] 盧敏彥、黃俊傑、張美元,"微型燃料電池-直接甲醇燃料電
池",化工技術,第10 卷第6 期,頁152-164,2002。
[12] A. Heinzel, C. Hebling, M. Muller, M. Zedda, and
C.Muller, "Fuel cell for low power applications",
Journal of Power Sources, Vol.105,pp.250-255,2002.
[13] C.K. Dyer, “Fuel cells for portable applications",
Journal of Power Sources, Vol.106,pp.31-34,2002.
[14] J.Borrelli, S.G. Kandlikar, T.Trabold, J.Owejan," Water
transfer visualization and two-phase pressure drop
measurements in a simulate PEMFC cathode minichannel.",
3rd International Conference on Microchannels and
Minichannels,June 13-15, 2005, Toronto, Ontario, Canada.
[15] H.Yang, T.S. Zhao, P. Cheng, “Gas-liquid two-phase flow
patterns in a miniature square channel with a gas permeable
sidewall", International Journal of Heat and Mass
Transfer, Vol.47,pp.5725-5739, 2004.
[16] K. Tuber, D.Pocza, C. Hebling, “Visualization of water
buildup in the cathode of a transparent PEM fuel cell",
106
Journal of Power Sources, Vol.124, pp.403-414, 2003.
[17] S.Litster, D.Sinton, N.Djilali," Ex situ visualization
of liquid water transport in PEM fuel cell gas diffusion
layers", Journal of Power Sources, Vol.154 pp.95–105,
2006.
[18] Y. Ishikawa, T.Morita, K.Nakata, K.Yoshida, M.Shiozawa,"
Behavior of water below the freezing point in PEFCs",
Journal of Power Sources, Vol.163, pp.708–712, 2007.
[19] V. Williams, E. Begg, L.Bonville, H. Russell Kunz, and
James M. Fentona,"Characterization of Gas Diffusion
Layers for PEMFC", “Journal of The Electrochemical
Society,Vol.151,A1173-A1180, 2004.
[20] Nam, M.Kaviany,"Effective diffusivity and
water-saturation distribution in single- and two-layer
PEMFC diffusion medium", International Journal of Heat and
Mass Transfer Vol.46, pp.4595–4611, 2003.
[21] F. Y. Zhang, X. G. Yang, and C. Y. Wang, “Liquid Water
Removal from a Polymer Electrolyte Fuel Cell",Journal of
The Electrochemical Society,Vol.153 pp.A225-A232, 2006.
107
[22] J.M. Songa, S.Y. Chab, W.M. Leea,"Optimal composition of
polymer electrolyte fuel cell electrodesdetermined by the
AC impedance method",Journal of Power Sources Vol.94,
pp.78-84, 2001.
[23] M. Prasanna, H.Y. Ha, E.A. Cho, S.A. Hong, I.-H.Oh
“Influence of cathode gas diffusion media on the
performance of the PEMFCs", Journal of Power Sources,
Vol.131, pp.147–154, 2004.
[24] Benziger, Nehlsen, Blackwell, Brennan, Itescu, “Water
flow in the gas diffusion layer of PEM fuel cells", Journal
of Membrane Science, Vol.26,pp.198–106, 2005.
[25] K.Sugiura, M. Nakata, T. Yodo, Y. Nishiguchi, M. Yamauchi,
Y. Itoh,"Evaluation of a Cathode Gas Channel with a Water
Absorption Layer/Waste Channel in a PEFC by Using
Visualization Technique", Journal of Power Sources,
Vol.145, pp.526-553, 2005.
[26] F.B. Weng, A.Su, C.Y.Hsu, C.Y.Lee,"Study of
Water-flooding Behavior in Cathode of a Transparent
Proton-Exchange Membrane Fuel Cell", Journal of Power
108
Sources, Vol.157, pp.674-680, 2006.
[27] Hakenjos, Muenter, Wittstadt, Hebling, "A PEM fuel cell
for combined measurement of current and temperature
distribution, and flow field flooding", Journal of Power
Sources , Vol.131 pp.213–216,2004.
[28] G.Q. Lu, C.Y. Wang,“Electrochemical and flow
characterization of a direct methanol fuel cell",
Journal of Power Sources, Vol.134, pp.33–40, 2004.
[29] J.P.Feser, A.K. Prasad, S.G. Advani,"Experimental
characterization of in-plane permeability of gas
diffusion layers", Journal of Power Sources, Vol.162,
pp.1226-1231, 2006.
[30] S. Berman,"Laminar Flow in Channels with Poros
Walls",Journal of Applied Physics, Vol.24, pp.1232-1235,
1953.
[31] K. Karode, ”Laminar flow in channels with porous walls,
revisited", Journal of Membrane Science Vol.191
237–241, 2001.
[32] Park, Li, "An experimental and numerical investigation
109
on the cross flow through gas diffusion layer in a PEM fuel
cell with a serpentine flow channel", Journal of Power
Sources, Vol.163, pp. 853–863, 2007
[33] C.Y. Soong, W.M. Yan, C.Y. Tseng, H.C. Liu, Chen, H.S.
Chu, "Analysis of reactant gas transport in a PEM fuel
cell with partially blocked fuel flow channels", Journal
of Power Sources, Vol.143, pp.36–47, 2005.
[34] U.Pasaogullari and C. Y. Wang, “Liquid Water Transport
in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells",
Journal of The Electrochemical Society, Vol.151,
pp.A399-A406, 2004.
[35] F.M. White, Viscous Fluid Flow", p.112-113, McGraw-Hill
Book Co. Third edition, 2006.
[36] R.K. Shan, A.L. London,"Laminar Flow Forced Convection
in Ducts – A Source Book for Compact Heat Exchanger
Analytical Data", Academic Press, New York, 1978.
[37] M.Y. Okiishi, Fundamentals of Fluid Mechanics, p.473&503,
Third Edition, John Wiley & Sons, INC., New York.
[38] F.M. White ,Fluid Mechanics, McGraw-Hill Book Co., New
110
York, 1979.
[39] J. Larminie, A. Dicks, Fuel Cell Systems Explained, 頁
75-80 & 399, Second Edition, UK, 2003.
[40] 林幸樵,"觀察透明PEMFC陰極之積水變化(不同氣體濃度濕
度)",元智大學機械工程學系,碩士論文,民國九十四年。
111
附錄A 氣體擴散層性質
TORAY PAPER SPECIFICATION SHEET
TP-060 TP-120
Properties Unit TP-060 TP-120
Thickness mm 0.19 0.37
bulk density g/cm3 0.45 0.45
porosity % 78 78
gas permeability mmaq/mm 27 33
(pressure difference under the air flow of 14cm/sec divided by thickness.)
electrical resistivity
through plane Ωcm 0.08 0.08
112
in plane 0.005 0.005
Thermal
conductivity
cal/cm ・ sec ・ °C (4x10-3) (4x10-3)
Flexural strength kgf/cm2 400 400
MPa 39.2 39.2
Flexural Modulus kgf/cm2 (1.0x105) (1.0x105)
MPa (9800) (9800)
Typical Properties for Standard Fabric Styles
CC
Construction Plain
Yarn Input 2/27
Count (W X F) 48 X 44
yarns/in
Areal Weight 3.4 oz/yd 2 6.5
Widths up to 33 in
Thickness 15 mils
Density 1.75 g/cc
Carbon Content 99%
Oxidation Rate (%
per hr)
1.0
at 932 F (500 C)
113
附錄B 注射式幫浦
驅動塊鬆緊旋
注射筒夾住
可裝載二個注射筒並結合廣闊速度範圍和支援各式各樣的注射筒尺
寸,可滿足實際上實驗運用的需要。
特色:
(1) 裝載一或兩個注射筒,每一個10 毫升 到140 毫升。
(2) 液晶顯示操作目錄。
(3) 手動自由調整驅動塊旋鈕鬆緊。
(4) 簡易的選單驅動設定。
(5) 穩定的連續注入工作流體。
(6) 可控制欲注入工作流體體積和自動關機功能。
(7) 四種流率單位的選擇。
(8) 幫浦在運轉時可以檢視或改變體積或流速設定值。
(9) 自我保護停機的功能。
(10) 過去的設定在會存儲在永久的記憶體中。
(11) 內建RS232C 介面,可連接電腦作控制。
114
(12) TTL interface for foot switch, timer, relay control, outputs for run
indicator, valve control (見下圖).
(13) Optional multi-step keypad programmable feature (見下圖).
規格說明
幫浦類型 注入
最多可裝載注射筒數目二個
注射筒尺寸 10 微升~140 豪升
注射筒載台尺寸 28×23×1414 公分
幫浦重量 4 公斤
線性出力 每分鐘18 公斤
每一微步前進 0.165 微米(1/16 step)
最大步比率 (1/2 Step) 1600/秒
最小步比率 1 step / 30 秒
準確率 ± < 1%
重現率 ± 0. 1%
可聽見警報 選購
115
幫浦運作流率對照表
注射筒 最小流率 最大流率
10 l 0.001 l/h 22.98 l/min
25 l 0.001 l/h 60.68 l/min
50 l 0.001 l/h 105.8 l/min
100 l 0.001 l/h 212.6 l/min
250 l 0.001 l/h 527.6 l/min
500 l 0.001 l/h 1.06 ml/min
1 ml 0.001 l/h 2.20 ml/min
3 ml 0.001 l/h 7.36 ml/min
5 ml 0.001 l/h 14.33 ml/min
10 ml 0.001 l/h 20.91 ml/min
20 ml 0.001 l/h 36.19 ml/min
30 ml 0.001 l/h 46.49 ml/min
60 ml 0.001 l/h 70.57 ml/min
140 ml 0.001 l/h 147 ml/min
117
附錄C 可變焦顯微放大系統
1. Zoom 70 主體
Model:29-65-15
Industrial Zoom 70 with Illuminator (同軸)
2. 迷你光學管 (Straight TV Tube)
Model:29-90-90
1X Mini TV Tube
3. 同軸光纖管光源 (250 W)
Model:FOI-250
TechniQuip Label-250 Watts Fiber Optic Illuminator
4. 2 倍輔助物鏡 (Auxiliary Lens)
Model:29-20-14
5. 一體成型載物平台加Z 軸微調器 (精度:0.01 mm)
Model:HD-Stand
尺寸:L×W=19×27 (cm)
For Zoom 70 系統手動對焦
6. 精密X、Y 軸載物平台
Model:BC-XY
尺寸:110L×110W (mm)
118
移動量:25 mm
內含360°旋轉盤
Maker:
Item 1,2,4:Optem (U.S.A)
Item 3: TechniQuip (U.S.A)
Item 5,6: 國產
119
附錄D 可變焦顯微鏡放大倍率表
1/2” CCD CAMERA + 15” MONITOR (47.6 X)
1 2 3 4 5 6 7
0.75 1.5 2.25 3 3.75 4.5 5.25
1/2X Tube 17.8 35.7 53.5 71.4 89.2 107.1 124.9
2/3X Tube 21.4 45.8 64.2 85.6 107.1 128.5 149.9
1X Tube 35.7 71.4 107.1 142.8 178.5 214.2 249.9
1.5X Tube 53.5 107.1 160.6 214.2 267.7 321.3 374.8
2X Tube 71.4 142.5 214.2 285.6 357 428.4 499.8
1/3” CCD CAMERA + 15” MONITOR (63.2 X)
1 2 3 4 5 6 7
0.75 1.5 2.25 3 3.75 4.5 5.25
1” 23.7 47.4 71.1 94.8 118.5 142.2 165.9
2/3X Tube 28.4 56.8 85.3 113.7 142.2 170.6 199
1X Tube 47.4 94.8 142.2 189.6 237 284.4 331.8
1.5X Tube 71.1 142.2 213.3 284.4 355.5 426.6 497.7
2X Tube 94.8 189.6 284.4 379.2 474 568.8 663.6
CCD Camera & Monitor 倍率轉換表
9” 12” 13” 14” 20” 27”
1” 14.3 19.1 20.6 22.12 31.8 42.9 1.58 每吋公倍數
2/3” 20.8 27.7 30 32.2 46.2 62.3 2.30 每吋公倍數
1/2” 28.6 38.1 41.3 44.38 63.5 85.7 3.17 每吋公倍數
1/3” 38.1 50.7 55 59 84.6 114.1 4.22 每吋公倍數
Zoom
倍率
TV Tube
Zoom 格數
Zoom
TV Tube 倍率
Monitor
Camera
倍率
Zoom 格數
120
附錄 E 氣體流量計 HM1171A
121
附錄 F 接觸角量測儀(FT
􀁄A
200)
The FTÅ200 is a flexible video system for measuring contact angle, surface and
interfacial tensions, wettability, and absorption. The time scale can vary from 1/60
second (60 images/second) to hours and can be varied nonlinearly to efficiently
follow absorptions. The system can capture both static and dynamic behavior of liquid
interactions. Analysis is based on the drop shape's size and shape, and data can be
plotted with built in graphing facilities or exported to standard database and
spreadsheet programs. Being a Windows program, it is easy to transfer data and
images to other applications and across networks.
The system functions as a transient analyzer, meaning it continually captures
images and can recall any number of past images after a trigger event. A variety of
dynamic events can furnish the trigger. One such trigger is real-time software
detection of the drop detaching from the dispense tip. The automatic syringe pump, a
timer, and user input, can also furnish triggers.
Completely automatic image analysis is available, but manual and partially
automatic modes are provided to accommodate difficult images Explicit graphics
show the operator where the automatic algorithms found the drop and specimen edges.
The analysis will function on true grayscale images which show sample detail, as
opposed to only silhouette style images.
122
Analysis functions:
The software can measure or calculate many quantities of interest from the drop
shape including:
1. Static or equilibrium contact angle
2. Capillary contact angle
3. Advancing contact angle
4. Receding contact angle
5. Pendant drop surface tension
6. Pendant drop interfacial tension
7. Drop volume interfacial tension
8. Sessile drop surface tension
9. Sessile drop spreading
10. Sessile drop adsorption
11. Surface energy from contact angles
12. Work of adhesion/adhesion tension
13. Critical micelle concentration
Zisman critical wetting tension