簡易檢索 / 詳目顯示

研究生: 林育賢
Lin, Yu-Shian
論文名稱: 具電網至車輛與車輛至電網功能及交錯式界面轉換器之電動車內置磁石永磁同步馬達驅動系統
An Electric Vehicle Interior Permanent-Magnet Synchronous Motor Drive with Interleaving Bidirectional Interface DC/DC Converter and Grid-to-Vehicle/Vehicle-to-Grid Functions
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 許源浴
廖聰明
劉添華
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 203
中文關鍵詞: 永磁同步馬達無位置感測控制電動車蓄電池再生煞車速度控制電壓控制電流控制充電控制功因校正電網至車輛車輛至家庭車輛至電網
外文關鍵詞: Permanent-magnet synchronous motor, sensorless control, electric vehicle, battery, regenerative braking, speed control, voltage control, current control, charging control, power factor correction, grid-to-vehicle, vehicle-to-home, vehicle-to-grid
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一以數位處理器為主之電動車用內置磁石永磁同步
    馬達驅動系統,並具有電網至車輛充電及車輛至家庭/車輛至電網放電操
    作能力。所建構之馬達驅動系統之電力電路由交錯式雙向前級直流-直流
    轉換器與三相變頻器組成。前者提供可調控及可提升之直流鏈電壓,以
    增進馬達於高速下之驅控性能。而於電網至車輛操作或馬達再生煞車
    時,可對蓄電池進行充電。
    經由適當控制,所建構之標準永磁同步馬達驅動系統具有良好之驅
    控性能,包含啟動、加速、減速及再生煞車等特性。此外,藉由直流鏈
    電壓提升、換相移位與弱磁控制等策略,進一步提升了驅動系統之高速
    操控性能。本論文亦探究永磁同步馬達無感測控制於電動車驅動之應用
    可行性,及從事其操控效能實測評定。在所提之混合型無位置感測控制
    架構中,先以高頻訊號注入法令馬達啟動;俟轉速升至一定值,再切換
    改採延伸型反電動勢估測法。標準與無位置感測控制永磁同步馬達驅動
    系統之驅動性能,均以一些實測結果比較評估之。
    於閒置狀態下,所開發永磁同步馬達驅動系統之電力電路,經適當
    安排可執行電網至車輛及車輛至家庭/車輛至電網等操作。於電網至車輛
    操作中,所形成之車載充電器由單相橋式切換式整流器及後接之降壓型
    直流-直流轉換器構成,由電網對蓄電池充電,具有良好之充電控制及交
    流入電電力品質特性。此外,以馬達線圈充當為儲能電感之集成型切換
    式整流器之效能,亦以一些實測結果觀察之。至於車輛至家庭/車輛至電
    網之操作,以既有馬達驅動系統電力電路組接建構一單相三線式變頻
    器,藉由所提差模與共模控制,可於獨立模式之車輛至家庭及聯網模式
    之車輛至電網操作下具有良好之60Hz 220/110V 交流輸出。


    This thesis develops a digital signal processor (DSP) based interior permanent-magnet
    synchronous motor (IPMSM) drive for electric vehicles (EVs) with grid-to-vehicle (G2V)
    charging and vehicle-to-home (V2H)/vehicle-to-grid (V2G) discharging operation
    capabilities. The established EV IPMSM drive consists of a two-leg interleaving
    bidirectional front-end DC/DC converter and a three-phase inverter. The front-end
    converter can establish an adjustable and boostable DC-link voltage for the motor drive to
    enhance its high speed driving performance. It can also allow the battery bank be charged
    from the mains or the motor during regenerative braking.
    Through proper control, the established standard EV IPMSM drive preserves
    satisfactory driving performances, including starting, acceleration, deceleration and
    regenerative braking characteristics. In addition, the DC-link voltage boosting, the
    commutation instant tuning and the field weakening approaches are further applied to
    enhance its performance under higher speeds. In addition, the feasibility and performance
    assessment of IPMSM sensorless control in EV propulsion are also explored. In the
    developed hybrid sensorless control scheme, the motor is started under high-frequency
    signal injection (HFI) sensorless control. As the motor speed rises to a preset value, the
    sensorless operation is changed to the observed extended back electromotive force (EEMF)
    based approach. The comparative experimental performance evaluations of the IPMSM
    drive under standard and sensorless controls are conducted.
    In idle condition, the developed PMSM drive can be properly arranged to perform
    G2V and V2H/V2G operations. For G2V operation, an on-board single-phase H-bridge
    boost SMR based charger is formed. It allows the battery be charged from mains with good
    line drawn power quality. In addition, the performance of an integrated SMR using the
    motor windings as energy storage inductors is evaluated experimentally. As to the
    V2H/V2G operations, a single-phase three-wire (1P3W) inverter is constructed. By
    applying the differential mode (DM) and common mode (CM) control approaches, it can
    yield good inverter output waveforms under autonomous V2H and grid-connected V2G
    discharging modes.

    誌謝.......................................................a 摘要.......................................................b 目錄.......................................................c 第一章、簡介................................................d 第二章、永磁同步馬達驅動及電動車簡介.............................f 第三章、標準電動車內置磁石永磁同步馬達驅動系統.....................g 第四章、無位置感測電動車內置磁石永磁同步馬達驅動系統................h 第五章、所建永磁同步馬達驅動系統之電網至車輛操作...................i 第六章、所建永磁同步馬達驅動系統之車輛至家庭與車輛至電網放電操作......j 第七章、結論................................................k 附錄: 英文論文..............................................l

    Electric Vehicles
    [1]J. Larminie and J. Lowry, Electric Vehicle Technology Explained. New York: John Wiley & Sons, Inc., 2003.
    [2]M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [3]P. Zhang and S. S. Williamson, “Recent status and future prospects of integrated starter-generator based hybrid electric vehicles,” in Proc. IEEE VPPC, 2008, pp. 1-8.
    [4]S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
    [5]S. Overington and S. Rajakaruna, “Review of PHEV and HEV operation and control research for future direction,” in Proc. IEEE PEDG, 2012, pp. 385-392.
    [6]A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 736-770, 2005.
    [7]A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell vehicles,” in Proc. IEEE, 2007, vol. 95, no. 4, pp. 806-820.
    [8]A. Khaligh and Z. Li, “Battery, ultracapacitor, fuel cell, and hybrid energy storage systems for electric, hybrid electric, fuel cell, and plug-In hybrid electric vehicles: state of the art,” IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806-2814, 2010.
    [9]M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain and W. Prochazka, “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
    [10]A. Ostadi, M. Kazerani and S. K. Chen, “Hybrid energy storage (HESS) in vehicular applications: a review on interfacing battery and ultra-capacitor units,” IEEE Trans. ITEC., pp. 1-7, 2013.
    [11]P. B. Bobba and K. R. Rajagopal, “Compact regenerative braking scheme for a PM BLDC motor driven electric two-wheeler,” in Proc. IEEE PEDES, 2010, pp. 1-5.
    [12]D. Y. Kim, J. H2 Lee, A. Y. Ko, C. Y. Won and Y. R. Kim, “Braking torque control method of IPMSM for electric vehicle using 2D look-up table,” in Proc. IEEE ISIE, 2013, pp. 1-5.
    B. Grid-to-Vehicle and Vehicle-to-Grid Operations
    Bi-directional inverter
    [13]B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
    [14]X. Zhou, S. Lukic, S. Bhattacharya and A. Huang, “Design and control of grid-connected converter in bi-directional battery charger for Plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC, 2009, pp. 1716-1721.
    [15]M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger,” in Proc. IEEE ECCE, 2010, pp. 870-876.
    [16]C. Hinkle, A. Millner and W. Ross, “Bi-directional power architectures for electric vehicles,” in Proc. IEEE CEWIT, 2011, pp. 1-6.
    [17]F. Berthod, B. Blunier, D. Bouquain, S. Williamson and A. Miraoui, “PHEV control strategy including vehicle to home (V2H) and home to vehicle (H2V) functionalities,” in Proc. IEEE VPPC., 2011, pp. 1-6.
    [18]D. C. Erb, D. C. Onar and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles,” in Proc. IEEE APEC, 2012, pp. 2066-2072.
    [19]W. Su, H. Eichi, W. Zeng and M. Y. Chow, “A survey on the electrification of transportation in a smart grid environment,” IEEE Trans. Ind. Info., vol. 8, no. 1, pp. 1-10, 2012.
    [20]M. Yilimaz and P. K. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5673-5689, 2013.
    Integrated battery charger
    [21]D. Wu, H. Chen, T. Das and D. C. Aliprantis, “Bidirectional power transfer between HEVs and grid without external power converters,” in Proc. IEEE ENERGY, 2008, pp. 1-6.
    [22]G. Pellegrino, E. Armando and P. Guglielmi, “An integral battery charger with power factor correction for electric scooter,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 751-759, 2010.
    [23]R. Surada and A. Khaligh, “A novel approach towards integration of propulsion machine inverter with energy storage charger in plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., pp. 2493-2498, 2010.
    [24]M. Bertoluzzo, N. Zabihi and G. Buja, “Overview on battery chargers for plug-in electric vehicles,” in Proc. IEEE PEMC, 2012, pp. LS4d.1-1 - LS4d.1-7.
    [25]M. A. Khan, I. Husain and Y. Sozer, “Integrated electric motor drive and power electrics for bidirectional power between the electric vehicle and DC or AC grid,” in Proc. IEEE ECCE, 2012, pp. 3403-3410.
    [26]S. Haghbin, S Lundmark, M Alakula and O Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, 2013.
    C. Permanent-Magnet Synchronous Motor Drives
    Motor design
    [27]D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw Inc., 1994.
    [28]R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control. New Jersey: Prentice Hall, Inc., 2001.
    [29]T. Noguchi, “Trends of permanent-magnet schronous machine drives,” IEEJ Trans. Elect. Electron. Eng., vol.2, pp. 125-142,2007.
    [30]E. Sato, “Permanent magnet synchronous motor drives for hybrid electric vehicles,” IEEJ Trans. Elect. Elctron. Eng., vol. 2, pp. 162-168, 2007.
    [31]D. Zarko, D. Ban and T. A. Lipo, “Analytical calculation of magnetic field distribution in the slotted air gap of a surface permanent-magnet motor using complex relative air-gap permeance,” IEEE Trans. Magn., vol. 42, no. 7, pp. 1828-1837, 2006.
    [32]G. Sooriyakumar, R. Perryman and S. J. Dodds, “Cogging analysis for fractional slot/pole permanent magnet synchronous motors,” in Proc. UPEC, 2007, pp. 188-191.
    [33]R. Islam, I. Husain, A. Fardoun and K. McLaughlin, “Permanent-magnet synchronous motor magnet designs with skewing for torque tipple and cogging torque reduction,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 152-160, 2009.
    [34]M. Franko, J. Ondrejicka and J. Kuchta, “Development and examination of interior permanent magnet synchronous traction Motor,” in Proc. ELEKTRO, 2012 pp. 179-184.
    [35]N. Bianchi and S. Bolognani, “Sensorless-oriented design of PM motors,” IEEE Trans. Ind. Appl., vol. 45, no. 4, pp. 1249-1257, 2009.
    Equivalent circuit modeling and parameter estimation
    [36]P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, Part I: The permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
    [37]S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
    [38]E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine”, IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002.
    [39]C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
    [40]A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets”, IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
    [41]M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
    [42]X. Jannot, J. C. Vannier, C. Marchand, M. Gabsi, J. Saint-Michel and D. Sadarnac, “Multi-physic modeling of a high-Speed interior permanent-magnet synchronous machine for a multiobjective optimal design, ”, IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 457-467, 2011.
    Current Control
    [43]M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [44]D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM synchronous motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 56-63.
    [45]M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1531-1538, 2000.
    [46]W. T. Su and C. M. Liaw, “Adaptive positioning control for a LPMSM Drive based on adapted inverse model and robust disturbance observer,” IEEE Trans. Power Electron., vol. 21, no. 2, pp. 505-517, 2006.
    [47]M. C. Chou and C. M. Liaw, “Development of robust current two-degrees-of- freedom controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
    [48]B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
    [49]A. Lekshmi, R. Sankaran and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS, 2008, vol. 1, no. 1, pp. 2876-2881.
    [50]W. Joerg, “Predictive current control using identification of current ripple,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4316-4353, 2008.
    [51]F. Morel, L. S. Xuefang, J. M. Retif, B. Allard and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
    Direct torque control
    [52]Y. A. R. I. Mohamed, “Direct instantaneous torque control in direct drive permanent magnet synchronous motors a new approach,” IEEE Trans. Energy Convers., vol. 22, no. 4, pp. 829-838, 2007.
    [53]Y. Inoue, S. Morimoto and M. Sanada, “Examination and linearization of torque control system for direct torque controlled IPMSM,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 159-166, 2010.
    [54]S. Kar and S. K. Mishra, “Direc torque control of permanent magnet synchronous motor drive with a sensorless initial rotor position estimation scheme,” in Proc. IEEE APCET, 2012, pp. 1-6.
    Speed control
    [55]M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” in Proc. IEEE ISCIII, 2007, pp. 137-141.
    [56]S. Rebouh, A. Kaddouri, R. Abdessemed and A. Haddoun, “Nonlinear control by input-output linearization scheme for EV permanent magnet synchronous motor,” in Proc. IEEE VPPC, 2007, pp. 185-190.
    [57]Y. A. R. I. Mohamed, “Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 855-862, 2006.
    [58]T. Pajchrowski and K. Zawirski, “Robust speed and position control based on neural and fuzzy techniques,” in Proc. Power Electron. Appl., 2007, pp. 1-10.
    [59]A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672-4675, 2009.
    [60]M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” in Proc. IEEE CCC, 2012, pp. 4412-4417.

    Voltage boosting and pulse amplitude modulation
    [61]F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Appl., vol. 40, no. 2, pp. 607-614, 2004.
    [62]A. Kawahashi, “A new-generation hybrid electric vehicle and its supporting power semiconductor devices,” in Proc. ISPSD, 2004, pp. 23-29.
    [63]K. Taniguchi, S. Saegusa and T. Morizane, “PAM inverter system with soft-switching PFC converter suitable for PM motor drive,” in Proc. IEEE PEDS, 2006, vol. 1, pp. 793-798.
    Field-weakening control
    [64]S. Morimoto, M. Sanada and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Trans. Ind. Appl., vol. 30, no. 4, pp. 920-926, 1994.
    [65]J. H. Song, J. M. Kim and S. K. Sul, “A new robust SPMSM control to parameter variations in flux weakening region,” in Proc. IECON, 1996, vol. 2, pp.1193-1198.
    [66]D. S. Maric, S. Hiti, C. C. Stancu and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IECON, 1998, vol. 1, pp. 508-512.
    [67]T. S. Kwon and S. K. Sul, “A novel flux weakening algorithm for surface mounted permanent magnet synchronous machines with infinite constant power speed ratio,” in Proc. IEEE ICEMS, 2007, pp. 440-445.
    [68]G. Pellegrino, E. Armando and P. Guglielmi, “Direct flux field-oriented control of IPM drives with variable DC link in the field-weakening region,” IEEE Trans. Ind. Appl., vol. 45, no. 5, pp. 1619-1627, 2009.
    [69]T. Miyajima, H. Fujimoto and M. Fujitsuna, “Direct voltage vector control for field weakening operation of PM machines,” in Proc. IEEE ECCE, 2011, pp. 1392-1397.
    [70]D. Strojan, D. Drevensek, Z. Plantic, B. Grcar and G. Stumberger, “Novel field-weakening control scheme for permanent-magnet synchronous machines based on voltage angle control,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2390-2401, 2012.
    [71]S. Chaithongsuk, B. Nahid-Mobarakeh, J. P. Caron, N. Takorabet and F. Meibody-Tabar, “Optimal design of permanent magnet motors to improve field-weakening performances in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
    D. Position Sensorless Control Methods
    Based on the derived variables or identified parameters
    [72]J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150.
    [73]D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless control of PM synchronous motors and brushless DC motors-an overview and evaluation,” in European Conference on Power Electronics and Applications, 2005, pp. 1-10.
    [74]A. H. Wijenayake, J. M. Bailey and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter online identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215.
    [75]N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
    [76]S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp. 297-303.
    [77]S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
    [78]M. Preindl and E. Schaltz, “Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems,” IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4087-4095, 2012.
    [79]M. Hinkkanen, T. Tuovinen, L. Harnefors and J. Luomi, “A combined position and stator-resistance observer for salient PMSM drives: design and stability analysis,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 601-609, 2012.
    Back-EMF methods
    [80]H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motors,” in IEE Proc. Electric Power Appl., 2001, vol. 147, no. 6, pp. 503-512.
    [81]F. Genduso, R. Miceli, C. Rando and G. R. Galluzzo, “Back EMF sensorless- control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
    [82]Z. Wang, K. Lu and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM,” IEEE Trans. Ind. Electron., vol. 27, no. 8, pp. 3817-3825, 2012.
    [83]P. Damodharan and K. Vasudevan, “Sensorless brushless DC motor drive based on the zero-crossing detection of back electromotive force (EMF) from the line voltage difference,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 661-668, 2010.
    [84]Z. Chen, M. Tomita, S. Ichikawa, S. Doki and S. Okuma, “Sensorless control of interior permanent magnet synchronous motor by estimation of an extended electromotive force,” IEEE Trans. Ind. Appl., vol. 3, pp. 1814-1819, 2000.
    [85]S. Morimoto, K. Kawamoto, M. Sanada and Y. Takeda, “Sensorless control strategy for salient-pole PMSM based on extended EMF in rotating reference frame,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1054-1061, 2002.
    Observer based methods
    [86]J. Kim and S. K. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
    [87]J. Solsona, M. I. Valla, and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996.
    [88]Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp. 582-591, 2000.
    [89]A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
    [90]J. Lee, J. Hong, K. Nam, R. Ortega and L. Praly, “Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-297, 2010.
    [91]Y. Zhao, W. Qiao and L. Wu, “Compensation Algorithms for sliding mode Observers in Sensorless Control of IPMSMs,” in Proc. IEEE IEVC, 2012, pp. 1-7.
    Intelligent methods
    [92]J. Cao, B. Cao, W. Chen, P. Xu and X. Wu, “Neural network control of electric vehicle based on position-sensorless brushless DC motor,” in Proc. IEEE ROBIO, 2007, pp. 1900-1905.
    [93]S. M. M. Mirtalaei, J. S. Moghani, K. Malekian and B. Abdi, “A novel sensorless control strategy for BLDC motor drives using a fuzzy logic-based neural network observer,” in Proc. IEEE SPEEDAM, 2008, vol. 2, pp. 1491-1496.
    Methods based on rotor magnet saliency
    [94]P. L. Jansen and R. D. Lorenz, “Transducerless position and velocity estimation in induction and salient AC machines,” IEEE Trans. Ind. Appl., vol. 31, no. 2, pp. 240-247, 1995.
    [95]S. Ogasawara and H. Akagi, “An approach to real-time position estimation at zero and low speed for a PM motor based on saliency,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 163-168, 1998.
    [96]F. Briz, M. W. Degner, A. Diez and R. D. Lorenz, “Static and dynamic behavior of saturation-induced saliencies and their effect on carrier-signal-based sensorless AC drives,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 670-678, 2002.
    [97]S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, pp. 1663-1668.
    [98]J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
    [99]J. M. Guerrero, M. Leetmaa, F. Briz, A. Zamarron and R. D. Lorenz, “Inverter nonlinearity effects in high-frequency signal-injection-based sensorless control methods,” IEEE Trans. Ind. Appl., vol. 41, no. 2, pp. 618-626, 2005.
    [100]Y. Jeong, R. D. Lorenz, T. M. Jahns and S. K. Sul, “Initial rotor position estimation of an interior permanent-magnet synchronous machine using carrier-frequency injection methods,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 38-45, 2005.
    [101]N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sul, “Advantages of inset PM machines for zero-speed sensorless position detection,” IEEE Trans. Ind. Appl., vol. 44, no. 4, pp.1190-1198, 2008.
    [102]E. de M Fernandes, A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Comparison of HF signal injection methods for sensorless control of PM synchronous motors,” in Proc. IEEE APEC, 2010, pp. 1984-1989.
    [103]L. Jingbo, T. Nondahl, P. Schmidt, S. Royak and M. Harbaugh, “An on-line position error compensation method for sensorless IPM motor drives using high frequency injection,” in Proc. IEEE ECCE, 2009, pp. 1946-1953.
    [104]D. Raca, P. Garcia, D. D. Reigosa, F. Briz and R. D. Lorenz, “Carrier-signal selection for sensorless control of PM synchronous machines at zero and very low speeds,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 167-178, 2010.
    [105]H. W. De Kock, M. J. Kamper and R. M. Kennel, “Anisotropy comparison of reluctance and PM synchronous machines for position sensorless control using HF carrier injection,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1905-1913, 2009.
    [106]G. D. Andreescu and C. Schlezinger, “Enhancement sensorless control system for PMSM drives using square-wave signal injection,” in Proc. IEEE SPEEDAM, 2010, pp. 1508-1511.
    [107]J. Bocker and C. Kroger, “Control of permanent magnet synchronous motor with dual-mode position estimation,” European Conf. on Power Electron. and Appl., 2005, pp. 1-10.
    [108]J. H. Lee, T. W. Kong and W. C. Lee, “A new hybrid sensorless method using a back EMF estimator and a current model of permanent magnet synchronous motor” in Proc. IEEE PESC, 2008, pp. 4256-4262.
    [109]K. Ide, H. Iura and M. Inazumi, “Hybrid sensorless control of IPMSM combining high frequency injection method and back EMF method” in Proc. IEEE IECON, 2010, pp. 2236-2241.
    [110]G. Foo and M. F. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and HF signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270-1278, 2010.
    [111]I. Hideaki, I. Masanobu, K. Takeshi and I. Kozo, “Hybrid sensorless control of IPMSM for direct drive applications,” in Proc. IEEE IPEC, 2010, pp. 2761-2767.
    [112]S. Bolognani, S. Calligaro, R. Petrella and M. Tursini, “Sensorless control of IPM Motors in the low-speed range and at standstill by HF injection and DFT processing,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 96-104, 2011.
    E. PWM Inverters
    [113]M. Hava, R. J. Kerkman and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
    [114]B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
    [115]N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, New York: John Wiley & Sons, 2003.
    [116]Y. Chen and K. Smedley, “Three-phase boost-type grid-connected inverter,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2301-2309, 2008.
    [117]B. Koushki, H. Khalilinia, J. Ghaisari and M. S. Nejad, “A new three-phase boost inverter-topology and controller,” in Proc. IEEE CCECE, 2008, pp. 757-760.
    [118]B. Koushki and J. Ghaisari “A voltage reference design for three-phase boost inverter,” in Proc. IEEE EURCON, 2009, pp. 650-654.
    [119]O. Dordevic, M. Jones and E. Levi “A space vector PWM algorithm for a three-level seven-phase voltage source inverter,” in Proc. EPE’11, 2011, pp.1-11.
    [120]A. M. Hava and N. O. Cetin, “A generalized scalar PWM approach with easy implementation features for three-phase, three-wire voltage-source inverters,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1385-1395, 2011.
    [121]C. Hou, C. Shih, P. Cheng and A. M. Hava “Common-node voltage reduction pulse-width modulation techniques for three-phase grid connected converters,” IEEE Trans. Ind. Electron., vol. 28, no. 4, pp. 1971-1979, 2013.
    [122]T. Kerekes, R. Teodorescu and U. Borup, “Transformerless photovoltaic inverters connected to the grid,” in Proc. IEEE APEC, 2007, pp. 1733-1737.
    [123]S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., 1994, vol. 141, no. 4, pp. 197-205.
    [124]R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007.
    [125]R. González, E. Gubia, J. López and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008.
    [126]H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 93-101, 2009.
    F. Front-end Converters and Switch-mode Rectifiers
    [127]F. Caricchi, F. Crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [128]A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness of AC drives for electric vehicles improved by a novel, boost DC-DC conversion structure,” in Proc. IEEE Power Electron. Transp. Conf., 1998, pp. 11-19.
    [129]F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
    [130]F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
    [131]Z. Ouyang, O. C. Thomsen, M. A. E. Andersen, O. Poulsen and T. Bjorklund, “New geometry integrated inductors in two-channel interleaved bidirectional converter,” in Proc. IEEE IECON, 2010, pp. 588-592.
    [132]H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
    [133]O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [134]B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [135]M. Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
    [136]B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [137]S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 1417-1425, 2004.
    [138]J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Electric Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
    [139]J. Y. Chai, Y. H. Ho, Y. C. Chang and C. M. Liaw, “On acoustic noise reduction control using random switching technique for switch-mode rectifiers in PMSM drive,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1295-1309, 2008.
    G. Others
    [140]Digital signal controller TMS320F28335 data sheet,” http://www.ti.com/lit/gpn/ tms320f28335.
    [141]C. Y. Chen, “Development of an electric vehicle permanent-magnet synchronous motor drive incorporating with grid-to-vehicle and vehicle-to-home operation capabilities,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2012.
    [142]P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, New York: Wiley, John & Sons, Inc., 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE