簡易檢索 / 詳目顯示

研究生: 蕭明城
Ming-Chen Hsiao
論文名稱: 醫用直線加速器多葉式準直儀之射束半影特性測量研究
MEASUREMENT OF BEAM PENUMBRAL CHARACTERISTICS OF MULTI-LEAF COLLIMATOR IN MEDICAL LINEAR ACCELERATOR
指導教授: 江祥輝
Shiang-Huei Jiang
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 125
中文關鍵詞: 射束半影多葉式準直儀醫用直線加速器膠片劑量計放射治療計畫系統
外文關鍵詞: Beam Penumbra, Multi-Leaf Collimator, Medical Linear Accelerator, Film Dosimeter, Radiation Treatment Planning System
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今各大醫療院所之放射腫瘤單位,皆多引進強度調控放射治療技術,以作為另一種放射治療技術選擇;醫用直線加速器機頭內之多葉式準直儀,即為達成此治療技術之必需工具,多葉式準直儀之葉片可直接形成治療照野。然而當射束經過葉片時所形成之射束半影,將影響放射治療計畫之製定與處方劑量給予之準確性及可靠度。為降低強度調控放射治療之處方劑量差異,由放射治療計畫系統之射束模式與實際測量之射束模式,探討多葉式準直儀射束半影特性造成之影響,並進一步了解兩者差異來源。
    本研究採用Gafchromic EBT膠片劑量計,進行多葉式準直儀射束半影特性之實驗測量;在規則照野部份,將幾何條件變化如照野大小、偏移射束中軸距離列入評估;在不規則照野部份,將葉片逐漸移動、葉片形成空隙時之類似實際治療照野情形列入評估,分析在上述情況時,葉片四周形狀所造成之射束半影特性與相對變化關係,再與放射治療計畫系統之相同射束模式比較,以研究葉片之射束半影特性對放射治療劑量分布造成之擾動情形,並了解放射治療計畫系統與實際測量結果之差異。本研究並嘗試建立Gafchromic EBT膠片劑量計之最佳化校正方法,透過校正參數之改變與膠片影像之處理,了解此類膠片之特性並提供較準確之劑量─響應關係。
    放射治療計畫系統未良好考慮葉片射束半影之影響,且治療照野邊緣之劑量差異,為葉片射束半影與輻射照野差異所共同貢獻,因此計算所得劑量分布在照野邊緣範圍,與實驗測量之結果略具差異;而在葉片移動時所造成之劑量擾動區與葉片產生之散射光子,在照野邊緣範圍處,計算所得劑量分布與實驗測量之結果亦存有差異;本研究將透過多葉式準直儀葉片之設計概念及放射治療計畫系統之運算模式特性,試圖解釋此差異產生之由來;惟研究結果顯示,放射治療計畫系統在劑量計算時,除須考慮因照野邊緣劑量梯度變化,所形成葉片射束半影之影響外,更需準確考慮多葉式準直儀葉片之幾何形狀特性與移動細節,並改善因射束發散性而產生之輻射照野差異,如此方可實際提升放射治療計畫運算結果之可靠度;另經不同校正參數之測試,已建立Gafchromic EBT膠片劑量計之使用程序,在實驗上有良好之穩定性。


    摘要 i 誌謝 ii 目錄 iii 圖目錄 vii 表目錄 xii 第一章 緒論 1 1.1 前言 1 1.2 簡介 2 第二章 多葉式準直儀 3 2.1 多葉式準直儀簡介 3 2.2 多葉式準直儀構造 4 2.2.1 取代上層金屬擋塊設計 5 2.2.2 取代下層金屬擋塊設計 7 2.2.3 保留上、下層金屬擋塊設計 8 2.3 照野形狀限制 9 2.4 葉片之衰減 11 2.4.1 葉片之材料與特性 11 2.4.2 射束穿透係數之要求 12 2.5 葉片間隙之穿透係數 12 2.6 葉片之形狀設計 13 2.7 多葉式準直儀之控制特性 16 2.7.1 金屬擋塊之控制 16 2.7.2 形成多葉式準直儀照野之電腦系統 17 2.8 輸出監控單位之計算 18 2.8.1 準直儀散射因數 18 2.8.2 假體散射因數 19 2.8.3 空氣中之光子散射 21 2.8.4 取代上層金屬擋塊之多葉式準直儀 22 2.8.5 取代下層金屬擋塊之多葉式準直儀 22 2.8.6 保留上、下層金屬擋塊之多葉式準直儀 22 第三章 膠片劑量計 3.1 膠片劑量計原理 24 3.1.1 傳統膠片與輻射作用原理 24 3.1.2 傳統膠片之能量反應 25 3.1.3 利用膠片測量劑量 25 3.2 實驗用之劑量計 26 3.2.1 Gafchromic EBT膠片簡介 26 3.2.2 Gafchromic EBT膠片之結構與組成 26 3.2.3 Gafchromic EBT膠片之作用原理 27 3.3 Gafchromic EBT膠片之測量 27 3.4 Gafchromic EBT膠片之操作與儲存環境 29 3.5 Gafchromic EBT膠片之數位化 30 3.5.1 Gafchromic EBT膠片掃描 30 3.5.2 Gafchromic EBT膠片掃描之方向性 30 第四章 實驗設備與方法 4.1 實驗照野之設定 31 4.1.1 放射治療計畫系統架構 32 4.1.2 放射治療計畫系統劑量計算模式 34 4.1.3 放射治療計畫系統執行流程 42 4.2 直線加速器之光子射束照射 43 4.2.1 醫用直線加速器構造 43 4.2.2 多葉式準直儀 44 4.2.3 固態水假體 45 4.3 Gafchromic EBT膠片響應之數位化方法 46 4.3.1 全彩平面掃瞄器 46 4.3.2 處理掃描後影像之程式語言 47 4.4 放射治療計畫系統與實驗結果之比較驗證 48 4.5 實驗方法 49 4.5.1 Gafchromic EBT膠片劑量計校正流程 49 4.5.2 Gafchromic EBT膠片之最佳化校正方法與特性探討 52 4.5.3 多葉式準直儀之射束半影特性 54 第五章 實驗結果與分析 5.1 文獻回顧 61 5.1.1 Gafchromic EBT膠片之相關文獻回顧 61 5.1.2 多葉式準直儀射束半影之相關文獻回顧 62 5.2 實驗結果分析 64 5.2.1 Gafchromic EBT膠片劑量計校正測試 64 5.2.2 多葉式準直儀之射束半影特性測量 77 5.2.3 葉片移動時,多葉式準直儀之射束半影特性測量 88 第六章 結論與未來建議 6.1 結論 109 6.1.1 Gafchromic EBT膠片之最佳化校正方法探討 109 6.1.2 多葉式準直儀之射束半影特性探討 110 6.2 未來建議 112 參考文獻 114 附錄 117 附錄 A 膠片掃描影像後處理之程式輸入檔 117 附錄 B 台北榮總Varian 21EX 10MV之劑量修正因子 122

    [1]R. Boesecke, G. Becker, K.Alandt, O. Pastyr, J. Doll, W. Schlegel et al, Modification of a three-dimensional treatment planning system for the use of multi-leaf collimators in conformation radiotherapy, Radiother. Oncol. 21, 261-268, 1991
    [2]X. Wang, S. Spirou, T. LoSasso, J. Stein, C. S. Chui and R. Mohan, Dosimetric verification of intensity-modulated fields, Med. Phys. 23 317–327, 1996
    [3]T. LoSasso, C. S. Chui and C. C. Ling, Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy, Med. Phys. 25 1919–1927, 1998
    [4]Van Stanvoort and Heijmen, Dynamic multileaf collimation without tongue and groove underdosage effects Phys. Med. Biol. 41 2091–2105, 1996
    [5]F. M. Khan, The physics of radiation therapy, 3ed, 2003
    [6]AAPM, Basic applications of multileaf collimators, Report of AAPM Radiation therapy Commitee Task Group 50, 2003
    [7]T. F. Jordan, and P. C. Williams, The design and performance characteristics of a multileaf collimator, Phys. Med. Biol. 39, 231–251, 1994
    [8]J. Galvin, A. Smith, and B. Lally, Characterization of a multi-leaf collimator system, Int. J. Radiat. Oncol. Biol. Phys. 25, 181–192, 1993
    [9]E. E. Klein, W. B. Harms, D. A. Low, V. Willcut, and J. A. Purdy, Clinical implementation of a commercial multileaf collimator: Dosimetry, networking, simulation, and quality assurance, Int. J. Radiat. Oncol. Biol. Phys. 31.1195–1208, 1995
    [10]N. Maleki, and P. K. Kijewski, Analysis of the field defining properties of a multi-leaf collimator, Med. Phys. 10, 518, 1983
    [11]A. Boyer, L., T. G. Ochran, C. E. Nyerick, T. J. Waldron, and C. J. Huntzinger, Clinical dosimetry for implementation of a multileaf collimator, Med. Phys. 19, 1255–1261, 1992
    [12]Clarkson, A note on depth dose in fields of irregular shape, J. Radiol. 14, 165, 1943
    [13]ISP, Gafchromic EBT self-developing film for radiotherapy dosimetry, 2006
    [14]江祥輝,放射治療計畫功能軟體與品質保證系統建立,行政院原子能委員會委託研究計畫研究報告,2003
    [15]J. H. Killoran, J. Y. Giraud, L. Chin, A dosimetric comparison of two multileaf collimator designs Med. Phys. 29, No. 8, 2002
    [16]AAPM, Radiochromic Film Dosimetry, Recommendations of AAPM Radiation Therapy Committee Task Group No. 55, 1998
    [17]S. Devic, J. Seuntjens, E. Sham, E. B. Podgorsak, C. R. Schmidtlein, A. S. Kirov, C. G. Soares, Precise radiochromic film dosimetry using a flat-bed document scanner, Med. Phys. 32, No. 7, 2005
    [18]S. Tung C. Tsao, Y. Ho, R. Shankar, L. Wang, L. B. Harrison, Energy dependence of response of new high sensitivity radiochromic films for megavoltage and kilovoltage radiation energies, Med. Phys. 32, No. 11, 2005
    [19]T. Cheung, M. J. Butson, K. Peter N. Yu, Post-irradiation colouration of Gafchromic EBT, Phys. Med. Biol. 50, 281-285, 2005
    [20]M. Todorovic, M. Fischer, F. Cremers, E. Thom, R. Schmidt, Evaluation of GafChromic EBT prototype B for external beam dose verification, Med. Phys. 33, No. 5, 2006
    [21] D. F. Lewis, Measurement Consistency and Single Pixel Noise of Two Epson Flatbed Film Scanners and a Vidar VXR-16, ISP whitepaper
    [22]J. M. Galvin, A. R. Smith, B. Lally, Characterization of a multileaf collimator System, Radiation Oncology Biol. Phys. 25, 181-192, 1992
    [23]X. Wang, S. Spirou, T. LoSasso, J. Stein, C. S. Chui, R. Mohan, Dosimetric verification of intensity-modulated fields, Med. Phys. 23, 317-327, 1996
    [24]I. J. Das, G. E. Desobry, S. W. McNeeley, E. C. Cheng, T. E. Schultheiss, Beam characteristics of a retrofitted double-focused multileaf collimator, Med. Phys. 25, 1676-1684, 1998
    [25]A . Boyer, S. Li, Geometric analysis of light-field position of a multileaf collimator with curved ends, Med. Phys. 24, 757-762, 1997
    [26]V. Esch A. Bohsung J. Sorvari P. Tenhunen M. Paiusco M. Iori M. Engstrom P. Bystrom H. Huyskens, Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: experience from five radiotherapy departments, Radiother. Oncol. 65, 53-70, 2002
    [27]G. A. Ezzell, J. M. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing, C. X. Yu, Guidance document on delivery treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee, Med. Phys. 30, 2089-2115, 2003
    [28]W. U. Laub, T. Wong, The volume effect of detectors in the dosimetry of small fields used in IMRT, Med. Phys. 30, 341-347, 2003
    [29]J. C. L. Chow, M. Seguin, A. Alexander, Dosimetric effect of collimating jaws for small multileaf collimated fields, Med. Phys. 32, 759-765, 2005
    [30]M. J. Butson, Peter K N Yu and T. Cheung, Rounded end multi-leaf penumbral measurements with radiochromic film, Phys. Med. Biol. 48, 247-252, 2003
    [31]J. C. L. Chow, B. Wettlaufer, R. Jiang, Dosimetric effects on the penumbra region of irregular multi-leaf collimated fields, Phys. Med. Biol. 51, 31-38, 2005
    [32] J. C. L. Chow, G. N. Grigorov, R. Jiang, Intensity modulated radiation therapy with irregular multileaf collimated field: A dosimetric study on the penumbra region with different leaf stepping patterns, Med. Phys. 33, 4606-4613, 2006
    [33]M. S. Huq, I. J Das, T. Steinberg, J. M. Galvin, A dosimetric comparison of various multileaf collimators, Phys. Med. Biol. 47, 159-170, 2002
    [34]H. E. Johns, J. R. Cunningham, The Physics of Radiology, 1971
    [35]N. Childress, I, Rosen, DoseLab 4.00 User Manual, 2005
    [36]A. Boyer and E. Mok, A photon dose distribution model employing convolution calculations, Med. Phys. 12, 169-177, 1985
    [37]R. Mohan ,C. S. Chui and L. Lidofsky, Differential pencil beam dose computation model for photons, Med. Phy.13, 64-73, 1986
    [38]C. S. Chui and R. Mohan, Extraction of pencil beam kernel by the deconvolution method, Med. Phys. 15, 138-144, 1988
    [39]A. Ahnesjo, M. Saxner and A, Trepp, A pencil beam model for photon dose calculation, Med. Phys. 19, 263-273, 1992
    [40]P. Storchi and E. Woudstra, Calculation of the absorbed dose distribution due to irregular shaped photon beams using pencil beam kernels derived from basic data, Phys. Med. Biol. 41, 637-656, 1996
    [41]H. F. Batho, Lung corrections in cobalt 60 beam therapy, J. Can. Assn. Radiol. 15, 79, 1964
    [42]M. E. J. Young and J. D. Gaylord, Experimental tests of corrections for tissue inhomogeneities in radiotherapy, Br. J. Radiol. 43, 349, 1970
    [43]http://www.varian.com/orad/prd056.html
    [44]http://doselab.sourceforge.net/
    [45]Varian Medical Systems: Planning reference guide for Eclipse algorithms, Eclipse 6.5, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE