研究生: |
顏宏修 Yen, Hung-Hsiu |
---|---|
論文名稱: |
未受訓練之黑腹果蠅的短期空間記憶 Short-term spatial memory in un-trained Drosophila Melanogaster |
指導教授: |
羅中泉
Lo, Chung-Chun |
口試委員: |
桑自剛
Sang, Tzu-Kang 吳嘉霖 Wu, Chia-Lin |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2015 |
畢業學年度: | 104 |
論文頁數: | 75 |
中文關鍵詞: | 果蠅 、短期記憶 、LED 螢幕 、行為實驗 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
記憶分成長期記憶 (long-term memory) 以及短期記憶 (short-term memory)。其中我們對於短期記憶如何在人類腦中運作深感興趣。但因人類腦神經的數量級過大 (860億條)以及電腦運算效能等問題造成我們在人類腦神經科學研究上有許多阻礙。(羅中泉, 2014)。而果蠅腦中腦神經數量級遠小於人類 (約幾十萬條) 對於現階段的電腦運算效能剛好符合加上有發展成熟的基因工具 (genetics tools)可以控制每一隻果蠅欲表現的性狀,是一個相當成熟的研究模型。因此我們以研究果蠅短期記憶對行走行為的影響為出發點,希望未來能了解短期記憶在果蠅腦中的形成方式。
為研究果蠅的短期記憶,我們建造了一款 LED環形螢幕並且以發展已久的果蠅視覺行為實驗Buridan’s paradigm為基礎,設計了一項研究果蠅空間短期記憶的實驗步驟。同時藉由我們所創新的數據分析方法分析數據來探討短期記憶能否對果蠅的行走行為造成影響。
我們的實驗結果發現,果蠅在目標物消失後的行走行為可以被歸類成三種形態,而其中一種形態的形成可以是由短期記憶所造成,同時在實驗數據分析中我們也發現果蠅可能有持有短期記憶超過一分鐘的能力。
Memory can be classified into long-term memory (LM) and short-term memory (SM). We are particularly interested in the mechanism of the SM between two of them. Owing to the quantity of neurons in human’s brain and the efficiency of computer, we chose Drosophila melanogaster (fruit fly) as studying model. We started with the research of how the fly’s SM affects its walking behavior and hoped that we can apply the result to the human’s brain in the future.
In order to research fly’s behavior and to demonstrate detailed features in SM, we built our own LED arena based on recent designs. In Drosophila’s research, SM was demonstrated by Buidan’s paradigm. We created a protocol, which is based on Buidan’s paradigm to study the walking behavior of fruit fly. We also created a new method to analyze fly’s behavior and the effect of fly’s SM.
Our result indicates that a fly’s walking behavior can be categorized into three basic types after the target was off set. Further result shows that one of the fly’s behaviors can be affected by its SM. During the analysis, we also observed the possible that the fly maybe have the ability of retaining SM for more than 60 seconds.
Bahl, A., Ammer, G., Schilling, T., & Borst, A. (2013). Object tracking in motion-blind flies. Nature Neuroscience, advance online publication. http://doi.org/10.1038/nn.3386
Barter, J. W., Li, S., Sukharnikova, T., Rossi, M. A., Bartholomew, R. A., & Yin, H. H. (2015). Basal Ganglia Outputs Map Instantaneous Position Coordinates during Behavior. The Journal of Neuroscience, 35(6), 2703–2716. http://doi.org/10.1523/JNEUROSCI.3245-14.2015
Borst, A. (2009). Drosophila’s View on Insect Vision. Current Biology, 19(1), R36–R47. http://doi.org/10.1016/j.cub.2008.11.001
Colomb, J., Reiter, L., Blaszkiewicz, J., Wessnitzer, J., & Brembs, B. (2012). Open Source Tracking and Analysis of Adult Drosophila Locomotion in Buridan’s Paradigm with and without Visual Targets. PLoS ONE, 7(8), e42247. http://doi.org/10.1371/journal.pone.0042247
Goetz, K. G. (1989). Search and Choice in Drosophila. In R. N. Singh & N. J. Strausfeld (Eds.), Neurobiology of Sensory Systems (pp. 139–153). Springer US. Retrieved from http://link.springer.com/chapter/10.1007/978-1-4899-2519-0_11
Götz, K. G. (1980). Visual guidance in Drosophila. Basic Life Sciences, 16, 391–407.
Kunimatsu, J., & Tanaka, M. (2010). Roles of the Primate Motor Thalamus in the Generation of Antisaccades. J. Neurosci., 30(14), 5108–5117. http://doi.org/10.1523/JNEUROSCI.0406-10.2010
Kuntz, S., Poeck, B., Sokolowski, M. B., & Strauss, R. (2012). The visual orientation memory of Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the central complex. Learning & Memory, 19(8), 337–340. http://doi.org/10.1101/lm.026369.112
Lin, C.-Y., Chuang, C.-C., Hua, T.-E., Chen, C.-C., Dickson, B. J., Greenspan, R. J., & Chiang, A.-S. (2013). A Comprehensive Wiring Diagram of the Protocerebral Bridge for Visual Information Processing in the Drosophila Brain. Cell Reports, 3(5), 1739–1753. http://doi.org/10.1016/j.celrep.2013.04.022
Liu, G., Seiler, H., Wen, A., Zars, T., Ito, K., Wolf, R., … Liu, L. (2006). Distinct memory traces for two visual features in the Drosophila brain. Nature, 439(7076), 551–556. http://doi.org/10.1038/nature04381
Neuser, K., Triphan, T., Mronz, M., Poeck, B., & Strauss, R. (2008). Analysis of a spatial orientation memory in Drosophila. Nature, 453(7199), 1244–1247. http://doi.org/10.1038/nature07003
Ofstad, T. A., Zuker, C. S., & Reiser, M. B. (2011). Visual place learning in Drosophila melanogaster. Nature, 474(7350), 204–207. http://doi.org/10.1038/nature10131
O’Reilly, R. C., & Frank, M. J. (2006). Making Working Memory Work: A Computational Model of Learning in the Prefrontal Cortex and Basal Ganglia. Neural Computation, 18(2), 283–328. http://doi.org/10.1162/089976606775093909
Pan, Y., Zhou, Y., Guo, C., Gong, H., Gong, Z., & Liu, L. (2009). Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. Learning & Memory, 16(5), 289–295. http://doi.org/10.1101/lm.1331809
Paulk, A., Millard, S. S., & van Swinderen, B. (2012). Vision in Drosophila: Seeing the World Through a Model’s Eyes. Annual Review of Entomology. http://doi.org/10.1146/annurev-ento-120811-153715
Reiser, M. B., & Dickinson, M. H. (2008). A modular display system for insect behavioral neuroscience. Journal of Neuroscience Methods, 167(2), 127–139. http://doi.org/10.1016/j.jneumeth.2007.07.019
Scholz, H., Ramond, J., Singh, C. M., & Heberlein, U. (2000). Functional Ethanol Tolerance in Drosophila. Neuron, 28(1), 261–271. http://doi.org/10.1016/S0896-6273(00)00101-X
Seelig, J. D., Chiappe, M. E., Lott, G. K., Dutta, A., Osborne, J. E., Reiser, M. B., & Jayaraman, V. (2010). Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nature Methods, 7(7), 535–540. http://doi.org/10.1038/nmeth.1468
Seelig, J. D., & Jayaraman, V. (2013). Feature detection and orientation tuning in the Drosophila central complex. Nature, 503(7475), 262–266. http://doi.org/10.1038/nature12601
Seelig, J. D., & Jayaraman, V. (2015). Neural dynamics for landmark orientation and angular path integration. Nature, 521(7551), 186–191. http://doi.org/10.1038/nature14446
Shih, H.-W., Wu, C.-L., Chang, S.-W., Liu, T.-H., Sih-Yu Lai, J., Fu, T.-F., … Chiang, A.-S. (2015). Parallel circuits control temperature preference in Drosophila during ageing. Nature Communications, 6. http://doi.org/10.1038/ncomms8775
Strausfeld, N. J., & Hirth, F. (2013). Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia. Science, 340(6129), 157–161. http://doi.org/10.1126/science.1231828
Strauss, R. (2002). The central complex and the genetic dissection of locomotor behaviour. Current Opinion in Neurobiology, 12(6), 633–638. http://doi.org/10.1016/S0959-4388(02)00385-9
Strauss, R., & Heisenberg, M. (1993). A higher control center of locomotor behavior in the Drosophila brain. The Journal of Neuroscience, 13(5), 1852–1861.
Strauss, R., & Pichler, J. (1998). Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. Journal of Comparative Physiology A, 182(4), 411–423. http://doi.org/10.1007/s003590050190
Strauss, R., Schuster, S., & Götz, K. G. (1997). Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. The Journal of Experimental Biology, 200(Pt 9), 1281–1296.
Thevarajah, D., Webb, R., Ferrall, C., & Dorris, M. C. (2010). Modeling the Value of Strategic Actions in the Superior Colliculus. Frontiers in Behavioral Neuroscience, 3. http://doi.org/10.3389/neuro.08.057.2009
Thran, J., Poeck, B., & Strauss, R. (2013). Serum Response Factor-Mediated Gene Regulation in a Drosophila Visual Working Memory. Current Biology, 23(18), 1756–1763. http://doi.org/10.1016/j.cub.2013.07.034
Wang, C.-T., Lee, C.-T., Wang, X.-J., & Lo, C.-C. (2013). Top-Down Modulation on Perceptual Decision with Balanced Inhibition through Feedforward and Feedback Inhibitory Neurons. PLoS ONE, 8(4), e62379. http://doi.org/10.1371/journal.pone.0062379
Xiong, Y., Lv, H., Gong, Z., & Liu, L. (2010). Fixation and locomotor activity are impaired by inducing tetanus toxin expression in adult Drosophila brain. Fly, 4(3), 194–203. http://doi.org/10.4161/fly.12668
羅中泉. (2014). 電影中的神經科學 – 全面進化(Transcendence).
http://ppt.cc/dvAxs