研究生: |
郭政倫 Cheng-Lun Kuo |
---|---|
論文名稱: |
以磁控濺鍍法研製鐵鈷鉿基之軟磁薄膜及其微結構與磁性質分析 Microstructure and Magnetic Properties of Fe-Co-Hf Based Soft Magnetic Thin Films Fabricated by Magnetron Sputtering for Radio-Frequency Applications |
指導教授: |
杜正恭
Jenq-Gong Duh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 鐵磁 、薄膜 、電感 、透磁率 、異向性 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
被動元件-電感,在整個電子元件的整合中,體積佔了很大的部份。如果以鐵磁薄膜來增加電感的磁通量,將能有效的增加電感的感值,進而縮小電感的尺寸。這將對3C產品的尺寸與重量縮減有助益。
本實驗選用成分為Fe–Co–Hf基的鐵磁薄膜作為研究的材料。以RF-磁控濺度系統在N2與Ar的氣氛下並藉著控制槍(gun)的位置可以成功鍍製出有鉿(Hf)濃度梯度的Fe–Co–Hf–N薄膜。利用此濃度梯度的濺射,增加薄膜的內應力,進而增加磁場的異向性,使此薄膜能具有更高的操作頻率。此外,在調變O2與Ar的氣氛下,鍍製出非晶相的Fe–Co–Hf–O磁性薄膜,再經由熱處理使之形成奈米晶與非晶的混合相,增加薄膜的電阻值,進而降低渦電流損耗。
此外,利用振動樣品磁力計(VSM)對薄膜作磁性質分析。在Fe–Co–Hf–N薄膜中,不同的鉿含量下,會有不同的磁性質表現。此薄膜磁具有高的磁場異向性(HK)約150 Oe與低的矯頑場(HC)約5 Oe。在高頻性質的表現上,其鐵磁共振頻率均超過3 GHz。另外, Fe–Co–Hf–O薄膜中,在成份Fe36.5Co17.2Hf9.8O36.5時,其飽和磁化量(MS)約為12 kG,矯頑場約0.8 Oe,且電阻值高達800 □□□cm,鐵磁共振頻率也能達到2.6 GHz。
Soft magnetic thin films with high saturation magnetization and resistivity are of great interest in micro-inductor for the magnetic device application.
In this study, amorphous Fe–Co–Hf–N thin films with a gradient concentration of Hf doping were fabricated by rf reactive magnetron sputtering. The evaluated magnetic properties and high-frequency characteristics were sensitive to the doping contents. A new technology was used to deposit a series Fe–Co–Hf–N thin films on which gradient concentration of Hf was present. By this new deposition technology, the films existed residual stress, and thus the stress-induced anisotropy field was enhanced. The as-deposited films without post annealing exhibited larger anisotropy field (Hk) of 150 Oe. In addition, coercivity (HC) of less than 5 Oe in both easy and hard axes, and electrical resistivity (ρ) of 500 μΩ-cm were obtained.
In addition, nano-composite Fe–Co–Hf–O thin films were developed using dc reactive magnetron sputtering. The influence of oxygen content on the microstructure, high-frequency characteristics and magnetic properties was investigated. With the increase in oxygen content from 31 to 40 at%, the films exhibited high resistivity up to 2600 μΩ-cm. A minimum coercivity (HC) value of 0.8 Oe andρ= 800 μΩ-cm was obtained for the Fe36.5Co17.2Hf9.8O36.5 film with thickness around 1300 nm.
The high frequency behavior of Fe–Co–Hf based films was also evaluated. The permeability measurement showed a permeability of Fe–Co–Hf–N films around 100 at 3 GHz and a ferromagnetic resonance frequency (fFMR) in excess of 3 GHz. In addition, the ferromagnetic resonance frequency of Fe–Co–Hf–O film was as high as 2.6 GHz, implying a high cut-off frequency. It is expected that the Fe–Co–Hf based films should be promising for practical applications as a high-frequency ferromagnetic material.
[1] M. Yamaguchi, K. Suezawa, K. I. Arai, et al. J. Appl. Phys. 85 (11), 7919 (1999).
[2] T. Sato, E. Komai and K. Yamasawa, IEEE Trans. Magn. 33, 3310 (1997).
[3] S. Chikazumi, Phys. Magne. 329, (1964).
[4] I. Fergen, K. Seemann, A. V. D. Weth, and A. Schppuen, J. Magn. Magn. Mater. 242, 146 (2002).
[5] K. Seemann, H. Leiste, and V. Bekker, J. Magn. Magn. Mater. 283, 310 (2004).
[6] G. Rieger, G. Rupp, G. Gieres, and et al., J. Appl. Phys. 91, 8447, (2002).
[7] M. Yamaguchi, Y. Miyazawa, K. Kaminish, and et al., J. Magn. Magn. Mater. 268, 170 (2004).
[8] V. Korenivski, and R. B. Van Dover, IEEE Trans. Magn. 34, 1375 (1998).
[9] V. Korenivski, J. Magn. Magn. Mater. 215,800 (2000).
[10] N. X. Sun, and S. X. Wang, J. Appl. Phys. 92, 1477, (2002).
[11] A. R. Chezan, C. B. Craus, N. G. Chechenin, and et al. Phys. Stat. Sol. (a), 189, 833 (2002).
[12] T. J. Klemmer, K. A. Ellis, L. H. Chen, B. Van Dover, and S. Jin, J. Appl. Phys. 87, 830 (2000).
[13] C. H. Lee, D. H. Shin, D. H. Ahn, and et al, J. Appl. Phys. 85, 4898 (1998).
[14] L. H. Chen, H. K. Chen, C. T. Hsieh, and et al., J. Appl. Phys. 91, 8450 (2002).
[15] X. L. Tang, H. W. Zhang, H. Su, and X. D. Jiang, J. Magn. Magn. Mater. 270, 84 (2004).
[16] M. E. McHenry, M. A. Willard, and D. E. Laughlin, Pro. Mater. Sci. 44, 291 (1999).
[17] K. Seemann, H. Leiste, and V. Bekker, J. Magn. Mag. Mater. 278 , 200 (2004).
[18] B. Peng, W.L. Zhang, et al. J. Magn. Mag. Mater. 318, 14 (2007).
[19] G. Herzer. IEEE Trans. Magn. 26, 1397 (1990).
[20] Y. Hayakawa and A. Makino, nanostructured Mater. 6, 989 (1995).
[21] Y. Liu, Z. W. Liu, C. Y. Tan, and C. K. Ong. J. Appl. Phys. 100, 093912 (2006).
[22] S.D. Li, Z.R. Yuan, J.G. Duh, J. Phys. D: Appl. Phys. 41, 055004 (2008).
[23] S.D. Li, Z.R. Yuan, J.G. Duh, J. Appl. Phys. Lett. 8, 92 (2008).
[24] S. Chikazumi and S.H. Charap. Phy. Magn. Krieger Publishing Company, Malabar, Florida (1978).
[25] B.D. Cullity. Introduction to Magnetic Materials, 2 nd Edition. Wiley-IEEE Press (2008).
[26] G. Herzer, Scripta Metal1. Mater. 33, 1714 (1995),
[27] K. Suzuki, G. Herzer, and et al. J. Magne. Magn. Mater. 177, 949 (1998).
[28] G. Herzer, IEEE Trans. Magn. 25, 3327 (1989).
[29] R. Albert, J.J. Becket and M.C. Chi, J. Appl. Phys. 49, 1653 (1978).
[30] R. M. Bozorth, Ferromagnetism, Princeton, N. J. D. Van Nostrand, ch. 18, 811-837 (1951).
[31] Michael Farle, Rep. Prog. Phys. 61, 755 (1998).
[32] N. Saito, H. Fuliwara, J. Phys. Soc. Jpn. 19, 1116 (1964).
[33] O. Acher, et al. J. Appl. Phys. 81, 8 (1997).
[34] P. Marin and A. Hernando, J. Magne. Magn. Mater. 215 (2000).
[35] S. Jin, W. Zhu, R.B. vanDover, T.H. Tiefel, and V. Korenivski, Appl. Phys. Lett. 70, 3161 (1997).
[36] Alex Van den Bossche and Vencislav Cekov Valchev, Taylor & Francis, ch. 3 (2005).
[37] V. Bekker, K. Seemann, and H. Leiste, J. Magne. Magn. Mater. 296, 37 (2006).
[38] Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).
[39] C. H. Ahn and M. G. Allen, IEEE Trans. Ind. Electron. 45, 876 (1998).
[40] W. A. Roshem and D. E. Turcotte, IEEE Trans. Magn. 24, 3213 (1988).
[41] W. A. Roshem, IEEE Trans. Magn. 26, 270 (1990).
[42] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, E. lifshin, Scanning Electron Microscopy and X-ray Microanalysis, plenum Press (1981).
[43] G. G. Stoney, Proc. R. Soc. London, Ser. A. 82, 172 (1909).
[44] J. Betz, E. du Tre´molet de Lacheisserie, and L. T. Baczewski, Appl. Phys. Lett. 68, 1 (1996).
[45] E. du Tre´molet de Lacheisserie, and J. C. Peuzin, J. Magn. Magn. Mater. 136, 189 (1994).
[46] M. Yamaguchi, O. Acher, Y. Miyazawa, K. I. Arai, and M. Ledieu, J. Magn. Magn. Mater. 242, 970 (2002).
[47] D. Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. Uverger, J. Appl. Phys. 85, 5151 (1999).
[48] C.Y. Li, J.G. Duh, Appl. Surf. Sci. 244, 477 (2005).
[49] K.H. Kim, Y.H. Kim, S.H. Han, H.J. Kim, J. Magn. Magn. Mater. 215, 368–371 (2000).
[50] S. E. Rissek, P. Kabos, T. Silva, F. B. Mancoff, and et al. IEEE Trans. Magn. 37, 2248 (2001).
[51] L. Li, A. M. Crawford, S. X. Wang, and A. F. Marshall, J. Appl. Phys. 97, 10F907 (2005).
[52] S. H. Ge, D. S. Yao, M. Yamaguchi, et al. J. Phys. D: Appl. Phys. 40, 3660 (2007).
[53] H. Chiriac, M. Pletea, E. Hristoforou, Sens. Act. 81, 166 (2000).
[54] P. Zou, W. Yu, and J. A. Bain, IEEE Trans. Magn. 38, 3501 (2002).
[55] R. F. Jiang, and C. H. Lai, J. Appl. Phys. 97, 10N302 (2005).
[56] N. D. Ha, M. H. Phan, and C. O. Kim, Nanotechnology, 18, 155705 (2007).