簡易檢索 / 詳目顯示

研究生: 鄭雅勻
Cheng, Ya-yun
論文名稱: Liver segmentation and vessel extraction from 3D CT images
在三維電腦斷層影像上進行肝臟切割及血管抽取
指導教授: 賴尚宏
Lai, Shang-Hong
口試委員: 莊永裕
朱宏國
劉庭祿
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 51
中文關鍵詞: 肝臟切割電腦斷層血管擷取3D模型建立
外文關鍵詞: liver segmentation, Computer tomography, Vessel extraction, 3D model reconstruction
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出一個用在電腦斷層的腹部影像上切割出肝臟的位置,以及擷取出肝臟內部的血管並建立相對應的3D立體模型以供醫生方便了解病人的器官位置,降低手術時間。我們的系統包含兩個部分,第一部分是一個利用病人特徵資訊結合區域增長的演算法來切出肝臟的位置,之後再利用3D空間中的隨機漫步法以及專家所給予的少許適當的標記點來優化切割出位置的可信度並增加對於不正常肝臟影像的使用性。在第二部分則包含,我們修改一個基於幾何空間特性的管狀濾波器,使其相比於原始的管狀濾波器,對於有病變組織存在的肝臟能有更佳的容忍度。我們藉由人體血管結構的一些自然特性來決定濾波器反應的可信度,進而擷取出血管的位置。我們所提出的系統應用在臨床影像上可得到相當的準確度。


    In this thesis, we present a system for liver segmentation and vessel structure extraction from 3D Computer Tomography (CT) images with the corresponding 3D model reconstruction. For clinical application, we want the system can be controlled or modified by the radiologists or doctors, so we purpose a semi-automatic method to segment the liver area which is based on a region growing technique combined with 3D random walker algorithm for interactive segmentation refinement. The experimental results show higher accuracy in the segmentation results by using the proposed algorithm. After obtaining the liver segmentation result, we use a modified tubular filter to extract the vessel structure which is more robust than the original one. Using some special characteristics of the human vessel structure, we achieve more accurate vessel extraction for 3D model reconstruction.

    List of Figures III List of Table VI 1. Introduction 1 1.1 Problem Description and Motivation 1 1.2 Contribution 4 1.3 Thesis Organization 5 2. Previous Works 6 3. Proposed Method 11 3.1 Liver Segmentation 13 3.1.1 Region Growing 13 3.1.2 3D Random Walker 16 3.1.3 3D liver model reconstruction 19 3.2 Vessel Extraction 20 3.2.1 Morphological filter and low response removal 25 3.2.2 Maximal response extraction 25 3.2.3 Height Ridge Traversal 26 3.2.4 Terminal Points Finding 27 3.2.5 Branch Connection 28 3.2.6 Vessel 3D model reconstruction 29 4. Experimental Result 31 4.1 First Stage -Liver Segmentation 31 4.1.1 Region growing 31 4.1.2 Refined by Random Walker 37 4.1.3 Reconstruction of the 3D liver model 38 4.2 Vessel Extraction 39 4.2.1 Vessel Extraction Result on 2D slices 40 4.2.2 Vessel structure reconstruction 40 4.2.3 Experimental Comparison 43 5. Conclusion 46 6. References 47

    [1] Frangi, A.F, Niessen, W.J, Vincken, K.L, Viergever, M.A, 1998. Multiscale vessel enhancement filtering. In: Medical Image Computing and Computer-Assisted Interventation, MICCAI, pp. 130–137.
    [2] A. Fruzan, R. Aghaeizadeh Zoroofi, M. Hori, and Y. Sato, “Liver segmentation by intensity analysis and anatomical information in multi-slice CT images.,” International Journal of Computer Assisted Radiology and Surgery, vol. 4, no. 3, pp. 287-297, 2009.
    [3] L. Ruskó, G. Bekes, G. Németh, and M. Fidrich, “Fully automatic liver segmentation for contrast-enhanced CT images.,” in Proc. MICCAI Workshop 3-D Segmentat. Clinic: A Grand Challenge, pp. 143–150, 2007.
    [4] S.J Lim, Y.Y. Jeong, C.W. Lee, Y.S. Ho “Automatic segmentation of the liver in CT images using the watershed algorithm based on morphological filtering.” SPIE Proc., vol.5370, pp. 1658–1666, 2004.
    [5] S.J. Lim, Y.Y. Jeong, Y.S. Ho,” Automatic liver segmentation for volume measurement in CT images”, J. Vis. Commun. Image R., 17, pp. 860–875, 2006.
    [6] T. Heimann, H. Meinzer “Statistical shape models for 3D medical image segmentation: A review.”, Medical Image Analysis, vol.13, np.4, pp. 543-563, 2009.
    [7] H. Lamecker, T. Lange, M. Seebaß “Segmentation of the Liver using a 3D Statistical Shape Model.”, Tech. rep., Zuse Institute, Berlin, 2004.
    [8] T. Heimann, HP. Meinzer, I. Wolf “A statistical Deformable Model for the segmentation of Liver CT volumes.”, MICCAI 2007,Workshop proceedings on 3D Segmentation in the clinic – a grand challenge, pp. 161-166.
    [9] X. Zhang, J. Tian, K. Deng, W. Wu and X. Li, ”Automatic Liver Segmentation Using a Statistical Shape Model With Optimal Surface Detection.”, IEEE Trans. Biomed. Eng., vol. 57, no. 10, pp. 2622-2626, 2010.
    [10] S. Huang, B.Wang, and X. Huang. “Using GVF Snake to Segment Liver from CT Images.”, In Proceedings of 3rd IEEE/EMBS International Summer School on Medical Devices and Biosensors, pp 145–148, 2006.
    [11] R. S. Alomari, S. Kompalli, and V. Chaudhary, “Segmentation of the Liver from Abdominal CT Using Markov Random Field Model and GVF Snakes.”, in Proceedings of the 2008 International Conference on Complex, Intelligent and Software Intensive Systems, vol. 00, pp. 293-298, 2008.
    [12] Ahmed Afifi, Toshiya Nakaguchi and Norimichi Tsumura, "A liver segmentation approach in contrast-enhanced CT image with patient-specific knowledge.”, Proc. SPIE 7962, 796232, 2011.
    [13] D. Furukawa, A. Shimizu, and H. Kobatake, “Automatic liver segmentation based on maximum a posterior probability estimation and level set method.”, in Proc. MICCAI Workshop 3-D Segmentat. Clinic: A Grand Challenge, pp. 117–124, 2007.
    [14] J. Lee, N. Kim, H. Lee, J. B. Seo, H. J. Won, Y. M. Shin, and Y. G. Shin, “Efficient liver segmentation exploiting level-set speed images with 2.5D shape propagation.”, in Proc. MICCAI Workshop 3-D Segmentat. Clinic: A Gand Challenge, pp. 189–196, 2007.
    [15] A. Wimmer, G. Soza, and J. Hornegger, “Two-stage semi-automatic organ segmentation framework using radial basis functions and level sets.”, in Proc. MICCAI Workshop on 3-D Segmentation in the Clinic: A Grand Challenge, pp. 179–188, 2007.
    [16] C. Bauer, T. Pock, E. Sorantin, H. Bischof, and R. Beichel, “Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts.”, Med. Image Anal, vol. 14, pp. 172–184, 2010.
    [17] O. Friman, M. Hindennach, C. Khnel, and H. Peitgen, “Multiple hypothesis template tracking of small 3D vessel structures.”, Medical Image Analysis, vol.14, no.2, pp. 160–171, Apr. 2010.
    [18] Yanling Chi, Jimin Liu, Venkatesh, S.K., Su Huang, Jiayin Zhou, Qi Tian, Nowinski, W.L. , "Segmentation of Liver Vasculature From Contrast Enhanced CT Images Using Context-Based Voting," Biomedical Engineering, IEEE Transactions on , vol.58, no.8, pp.2144-2153, Aug. 2011.
    [19] Y. Shang, R. Deklerck, E. Nyssen, A. Markova, J. de Mey, X. Yang, and K. Sun, “Vascular active contour for vessel tree segmentation.”, Biomedical Engineering, IEEE Transactions on, vol. 58, no. 4, pp. 1023-1032, Apr. 2011.
    [20] L. Grady. Random walks for image segmentation. to appear in IEEE Trans. on Pattern Analysis and Machine Intelligence, 2006.
    [21] Yi- Ling Chen, Tung-Ying Lee, Bing-Yu Chen and Shang-Hong Lai, Bipartite Polar Classification for Surface Reconstruction, Computer Graphics Forum, Volume 30, Issue7, pp. 2003-2010, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE