研究生: |
傑德 |
---|---|
論文名稱: |
金屬催化有機轉換以合成高度官能基化之雜環分子 Metal Catalyzed Organic Transformations for Synthesis of Highly Functionalized Heterocycles |
指導教授: | 劉瑞雄 |
口試委員: |
蔡易州
陳貴通 侯敦仁 陳銘洲 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 748 |
中文關鍵詞: | 催化 、金金屬 、亞硝基苯 、環化反應 、環化加成反應 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文介紹了藉由使用金及銠鹽開發新的合成有機轉換。使用這些軟alkynophilic金屬使廣泛的各種各樣的現成的基質進行溫和的、非鏡像選擇性和高效轉換來合成有用的含氮雜環產物。為了更好了解,將本文共分四章。
第一章關於金催化1-炔基-2-硝基苯進行氧化還原/[2+2+1]環加成反應以合成有立體選擇性含氮雜環。這樣的氮雜環核心是大自然最經常遇到的架構並在生物領域具有廣泛的應用。所產生的產物的核心結構是透過一個正式的[2+2+1]環加成反應,其中包含α-羰基碳烯、亞硝基類與烯類化合物。催化的應用包括不同的多電子烯烴和含多種取代基的苯環。
第二章關於金催化硝基苯與烯基金進行[3+3]環加成反應以有效地合成奎林與奎林氮氧化物。此新反應的應用使藉由廣泛二氮化合物與硝基苯來完成。
第三章利用金金屬催化產生金卡賓中間體並與亞硝基苯進行[4+2]環化加成反應而得1,2氮氧化合物。此[4+2]環化產物是經由炔丙醚類與亞硝基苯與適當的金屬催化條件得到,並且可適用於建構相當廣泛的官能基上。
第四章敘述發現到重氮烯類化合物會經由波瓦羅夫反應得到含氮環化產物,利用三氟甲基硫酸催化進行波瓦羅夫反應可得到高度的立體選擇性環化重氮產物,進而得到二氫奎寧或是dihydro-1H-benzo[b]azepines,產物具有天然物或有生物活性化合物的主架構。
Refrences
(1) See reviews: (a) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G.
Angew. Chem., Int. Ed. 2002, 41, 1668. (b) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev. 1993, 93, 741. (c) Boger, D. L. Chem. Rev. 1986, 86, 781. (d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. (e) Trost, B. M. Angew. Chem.1995, 107, 285; Angew.Chem .Int.Ed. Engl. 1995, 34, 259. (f) Trost, B. M. Science. 1991, 254, 1471. (g) Benbow, J. F.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 12305. (h) McClure, K.; Benbow, J. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1991, 113, 8185.
(2) For reviews covering gold-catalyzed cycloaddition reactions, (a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (b) Abu Sohel, S. M.; Liu, R.-S. Chem. Soc. Rev. 2009, 38, 2269. (c) Shapiro, N. D.; Toste, F. D. Synlett 2010, 675.
(3) Selected examples for cycloaddition with alkynes: (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 9244. (b) Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654. (c) Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598. (d) Li, C.W.; Lin, G.-Y.: Lin R. -S. Chem. Eur. J. 2010, 16, 5803. (e) Davies, H. M. L.; Xiang, B.; Kong, N.; Stafford, D. G. J. Am. Chem. Soc. 2001, 123, 7461. (f) Davies, H. M. L.; Hu,B.; Saikali, E.; Bruzinski, P. R. J. Org. Chem. 1994, 59, 4535-4541.
(4) A generation of α-carbonyl carbenoids using Ph2SO (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 4160. (b) Witham, C. A.; Mauleón, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838. (c) Li, G.; Zhang, L. Angew. Chem.
26
Int. Ed. 2007, 46, 5156. (d) Cuenca, A. B.; Montserrat, S. K.; Hossain, M.; Mancha, G.; Lledós. A.; Medio-Simón, M.; Ujaque, G.; Asensio, G. Org. Lett. 2009, 11 , 4906. (e) Li, C.-W.; Pati, K.;Lin, G.-Y.; Abu Sohel, S. M.; Hung H.-H.; Liu, R.-S. Angew. Chem. Int. Ed. 2010, 49,9891.
(5) α-Carbonyl carbenoids are generated from nitrogen-based oxides. See reference. (a) Cui, L.; Zhang, G.; Peng, Y.; Zhang, L. Org. Lett. 2009, 11 , 1225-1228; (b) Cui, L.; Peng, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 8394. (c) Yeom, H.-S.; Lee, J.-E.; Shin, S. Angew. Chem. Int. Ed. 2008, 47, 7040. (d) Ye, L.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 3258. e) Ye, L.; He W.; Zhang, L. J. Am. Chem. Soc., 2010, 132, 8550.
(6) a) L.-P. Liu, B. Xu, M. S. Mashuta, G. B. Hammond, J. Am. Chem. Soc. 2008, 130, 17642. b) D. Weber, M. A. Tarselli, M. R. Gagne, Angew. Chem. 2009, 121, 5843; Angew. Chem. Int. Ed. 2009, 48, 5733; c) A. S. K. Hashmi, A. Schuster, F. Rominger, Angew. Chem. 2009, 121, 8396; Angew. Chem. Int. Ed. 2009, 48, 8247; d) A. S. K. Hashmi, Gold Bull. 2009, 42, 275.
(7) For a Review on mechanisms and intermediates in gold catalysis, see: A. S. K. Hashmi, Angew. Chem. 2010, 122, 5360; Angew.Chem. Int. Ed. 2010, 49, 5232.
(8) a) Q. Yao, M. Zabawa, J. Woo, C. Zheng, J. Am. Chem. Soc. 2007, 129, 3088; b) Y. Zhang, G. Song, G. Ma, J. Zhao, C. L. Pan, X. Li, Organometallics 2009, 28, 3233.
(9) For Reviews, see: a) S. Youssif, ARKIVOC 2001, 242; b) A. V. Ryzhakov, L. L. Rodina, Heterocycles 2008, 75, 2367; c) S. Ley, J. Norman, W. P. Griffith, S. P. Marsden, Synthesis 1994, 639. d) J. Pool, B. Scott, J. Kiplinger, J. Am.Chem. Soc. 2005, 127, 1338.
(10) a) L. C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020; b) L. C. Campeau, D. J. Schipper, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 3266; c) L. C. Campeau, D. R. Stuart, J.-P. Leclerc, M. Bertrand-Laperle, E. Villemure, H. Y. Sun, S. Lasserre, N. Guimond, M. Lecavallier, K. Fagnou, J. Am. Chem. Soc. 2009, 131, 3291; d) J. P. Leclerc, K. Fagnou, Angew. Chem. 2006, 118, 7945; Angew. Chem. Int. Ed. 2006, 45, 7781; e) M. P. Huestis, K. Fagnou, Org. Lett. 2009, 11, 1357; f) S. H. Cho, S. J. Hwang, S. Chang, J. Am. Chem. Soc. 2008, 130, 9254; g) P. Xi, F. Yang, S. Qin, D. Zhao, J. Lan, G. Gao, C. Hu, J. You, J. Am. Chem. Soc. 2010, 132, 1822.
27
(11) J. Wu, X. Cui, L. Chen, G. Jiang, Y.Wu, J. Am. Chem. Soc. 2009, 131, 13888. b) L. Ye,
L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258;
(12) H. S. Yeom, Y. Lee, J. E. Lee, S. Shin, Org. Biomol. Chem. 2009, 7, 4744.
(13) Asao, N.; Sato, K.; Yamamoto, Y. Tetrahedron Lett. 2003, 44, 5675.
(14) (a) McClure, K.; Benbow, J. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1991, 113 (b)
Benbow, J. F.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 12305.,
8185. (c) Wang, T.; Huang, X.-L.; Ye, S. Org. Biomo, Chem. 2010, 8, 5007.
(15) X-ray crystallographic data of compound 6a provided in Supporting Information.
(16) In the presence of PPh3AuNTf2, we observed a gradual change of species 1-1a to a
mixture of 1-1a/1-1a’= 6:1 for 24 h in DCE at 25 0C. Under the same condition,. its epimer
1-1a’ gave a composition 1-1a/1-1a’= 2:1. A complete equilibrium requires a much longer
time.
(17) Structural characterization of the dimerized product 12 relies on an X-ray diffraction study
of its analogue; X-ray data are presented in Supporting Information.
(18) Substrates bearing methoxy groups at the phenyl C(4) or C(5) carbons are incompatible
with this catalysis because they tend either to stabilize the nitro group, or to reduce the
alkyne electrophilicity.
(19) X-ray crystallographic data of compound 1-9a provided in Supporting Information.
(20) Nitrone E may be generated from R-carbonyl carbenoid B, and its role is inferred from
the mechanism of formation of the dimerization product 12.17 We envisage that the
resulting cycloadduct H is somewhat strained and subject to gold-catalyzed rearrangement
to the observed azacyclic product through intermediates I and J. Nevertheless, this
mechanismis expected to give a mixture of isomeric products 1-1a and 1-1a’ because of
free rotation around the C3-C4 bond in intermediates I and J.
28
(21) We also examined this reaction with internal alkyne 11, but its gold catalysis gave
benzo[c]isoxazole 12 in 76% yield. This transformation was previously reported by
Yamamoto et. al.,13 but we revised their mechanism involving gold α-carbonylcarbenoids
as depicted below. This reaction outcome also supports our hypothetic mechanism
involving gold α-carbonylcarbenoids B.
(22) See the Supporting Information for the details of calculation procedures, energy profiles
and the structure of transition state.
(23) a) Bonati, F.; Minghetti, G. Gazz. Chim. Ital. 1973, 103, 373.b) Johansson, M. J.; Gorin,
D. J.; Stabe, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002.c) Melhado, A. D.;
Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12638.
(24) a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648.b) C. Lee, W. Yang, R.G. Parr, Phys.
Rev. 1988, B37, 785. c) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270. d) W. R.
Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284. e) P. J. Hay, W. R. Wadt, J. Chem. Phys.
1985, 82, 299. f)Frisch, M.