研究生: |
林芳新 Lin, Fang-hsin |
---|---|
論文名稱: |
多功能金-磁鐵礦異核結構奈米材料的製備與催化及生醫應用研究 Fabrication of multifunctional gold-magnetite heterostructures: catalytic and biomedical application |
指導教授: |
董瑞安
Doong, Ruey-an |
口試委員: |
鄭淑芬
林昇佃 張煥宗 陳三元 白曛綾 彭旭霞 董瑞安 |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 229 |
中文關鍵詞: | 金奈米粒子 、磁鐵礦 、異核結構 、核磁共振 、還原催化 |
外文關鍵詞: | Gold nano particle, Magnetite, Heterostructure, MRI, Catalytic reduction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在金-磁鐵礦混和材料(hybrid materials)中,以啞鈴型奈米粒子(dumbbell-like nanoparticles)及花朵型奈米粒子(flower-like nanoparticles)為一新穎多功能奈米材料,由於其結合二種材料於單一結構中,因此可同時結合光學、催化和磁性特質而廣泛應用於各個領域。 本研究的目的主要是建立一個有效的方法來合成不同形貌之金-磁鐵礦及不同金屬-磁鐵礦異質結構奈米粒子。並探討不同型貌之金-磁鐵礦異質結構於核磁共振顯影和光學感測之能力,及其於催化還原反應之協同效應。本研究首先探討單一氧化鐵與金奈米粒子的製備,在合成步驟中,利用增加反應溫度來降低金的尺寸及增加油酸鐵複合物的濃度及油酸和油胺來降低氧化鐵奈米粒子的尺寸。同時,利用熱裂解法以合成不同形貌之磁鐵礦-金雙功能性異質結構,並探討不同油酸鐵濃度、金粒子大小、溶劑、反應時間對於顆粒形貌的影響。成功製備而得的材料進行XRD、SQUID、紫外光可見光分光光度計等以鑑定其物化特性。結果顯示,金-磁鐵礦異質結構在吸收光譜中有發現紅位移現象及磁性增強等現象。另外,本研究更將此方法推廣至不同金屬-磁鐵礦之合成,其結果顯示,此合成法可成功製備銀、鉑、鈀等金屬與磁鐵礦之異核結構。
為了解金-磁鐵礦異質結構中之界面化學,本研究利用X光吸收光譜(X-ray absorption spectroscopy,XAS)來鑑定金-磁鐵礦異質結構之細部結構與電子特性,並利用延伸X光吸收細微結構(Extended X-ray fine structure,EXAFS)來鑑定界面連接及細微結構。其結果顯示,當金奈米粒子與磁鐵礦形成異質結構後,金奈米粒子的d-hole數量會增加,證實了在合成過程中,電子會由金轉移至磁鐵礦上。此外,在金-磁鐵礦異質結構中的二價鐵增加,亦證明金與磁鐵礦間的電荷轉移。而從XAS的理論模擬結果顯示在金-磁鐵礦異質結構中具有金與鐵的鍵結,證明金與磁鐵礦於界面有連結關係。
在應用方面,首先,探討啞鈴型與花型之金-磁鐵礦異質結構於還原對-硝基苯酚及2,4-二硝基酚之應用。研究結果發現,所製備出的金-磁鐵礦異核結構具有良好的磁性與催化特性,然而,由於啞鈴形與花朵形金-磁鐵礦異核結構間的磊晶成長方式(epitaxial growth)不同,導致其在磁性與催化活性上有所不同。以啞鈴型金-磁鐵礦異核結構而言,其對硝基酚化合物擬一階反應速率常數為0.63-0.72 min-1,而對於花朵形奈米粒子而言,其擬一階反應速率常數為0.38-0.46 min-1。除此之外,所製備而得的奈米粒子具有磁性回收之特點,其回收再使用率可重覆使用達6次以上,且轉換率近乎100%。同時,本研究也利用XPS及FTIR來了解金-磁鐵礦異核結構於硝基酚化合物的還原催化反應機制。本研究更進一步探討不同環境參數對於催化還原對硝基酚之效率影響,並使用Langmuir-Hinshewood速率模式來描述動力學數據,結果顯示,異核結構於催化硝基酚為表面反應,且其活化能為26.3 kJ/mol。而在pH效應下,發現在較高pH值的情況下,會減慢氫硼化物的降解而降低催化效率。
除催化特性探討外,本研究也評估不同型貌之金-磁鐵礦異核結構於核磁共振成像(MRI)之顯影能力。首先,先利用8-arm PEG-amine進行顆粒的表面修飾,以達最佳相轉移。所得之分散奈米材料再進行核磁共振成像,其結果顯示,當異核結構中的金粒子顆粒變小,其r2值會增加,由10 nm金-磁鐵礦的112.9 mM 1s-1增加至124.1 mM 1s-1(5 nm金-磁鐵礦異質結構)。而形貌方面,以花朵型之顯影較啞鈴型好,其r2分別為127.7、112.9 mM 1s-1。除此之外,亦將金-磁鐵礦奈米粒子進行生物分子修飾,以偵測tau protein。所發展的奈米偵測器對tau protein的偵測之線性範圍為0.5-50 ng/mL及偵測極限為3 ng/mL。
由本研究的結果可知,利用油酸鐵搭配金奈米粒子於高溫熱裂解為一簡單之方法以製備金-磁鐵礦異核奈米粒子,同時,藉由調控不同反應參數可有效控制其形貌及組成。在催化應用方面,顯示金-磁鐵礦異核結構具有協同效應、再回收性且催化能力優於單一金奈米粒子,因此可作為一理想之材料,進行不同領域的異相催化,其也具有潛力應用於純化,催化,監測設備及綠色化學等領域。除此之外,在生醫應用方面,實驗結果證明金-磁鐵礦於核磁共振成像(MRI)顯影能力及光學偵測能力深受形貌影響,因此,良好的調控金-磁鐵礦異核結構之形貌以突顯其磁學及光學特性能有效的將其應用於生醫領域之雙探針成像偵測。
The Au-Fe3O4 hybrid materials, especially dumbbell-like and flower-like nanoparticles, have been demonstrated to be a potential nanocomposite for various applications because of their enhanced physicochemical properties. In this study, an effective process for the synthesis of different morphologies of Au-Fe3O4 heterostructures and other M-Fe3O4 heterostructures (M= Ag, Pt, Pd) has been developed, and the effects of different morphologies of Au-Fe3O4 heterostructures on MRI/sensing and catalysis are systematically studied. The monodisperse and size-tunable magnetic Fe3O4 and Au nanoparticles (NPs) were first synthesized and optimized. The diameters of as-synthesized Fe3O4 NPs decrease upon increasing concentrations of iron oleate complex and oleic acid/oleylamine, while the sizes of Au NPs decrease with the increase in reaction temperature. The Au-Fe3O4 heterostructures are successfully fabricated by thermal decomposition of iron oleate-complex in the presence of Au seeds through a seed-mediated growth process. Different morphologies of Au-Fe3O4 heterostructures can be easily controlled by adjusting the amount of iron oleate-complex, size of Au seeds, duration, and solvent amount. The dumbbell-like and flower-like Au-Fe3O4NPs can be synthesized using 5 nm and 10 nm Au NPs as seeds, respectively. These heterostructures show a red-shift in surface Plasmon resonance band and enhanced magnetic property. In addition, other noble metal–iron oxide nanoparticles including Ag, Pt and Pd are successfully produced using the same synthesis procedure. The structural and electronic properties of epitaxial linkage in Au-Fe3O4 heterostructures were investigated by X-ray absorption spectroscopy (XAS). After conjugation with iron oxides, the d-hole population of Au NPs increases, indicating a charge transfer from Au to Fe3O4. In addition, the increase in Fe2+ valence state was observed in Au-Fe3O4 heterostructures, which gives the strong evidence on supporting the hypothesis of the charge transfer between Au and Fe3O4. The theoretical simulation of XAS further demonstrates the presence of Au-Fe bonding in the Au-Fe3O4 heterostructures and confirms the epitaxial linkage relationship.
The dumbbell- and flower-like Au-Fe3O4 heterostructures were further used as magnetically recyclable catalysts for 4-nitrophenol and 2,4-dinitrophenol reduction. The heterostructures exhibit bifunctional properties with high magnetization and excellent catalytic activity towards nitrophenol reduction. The pseudo-first-order rate constants for nitrophenol reduction are 0.63-0.72 min-1 and 0.38-0.46 min-1 for dumbbell- and flower-like Au-Fe3O4 heterostructures, respectively. In addition, the heterostructured nanocatalysts show good separability and reusability which can be repeatedly applied for nearly complete reduction of nitrophenols for at least 6 successive cycles. The reaction mechanism for nitrophenol reduction by Au-Fe3O4 nanocatalysts is also proposed and confirmed by XPS and FTIR analyses. In addition, several environmental parameters including the initial nitrophenol concentration, pH, and temperature were optimized for the reduction of 4-trophenol. The kinetic data of nitrophenol reduction could be well-described by the Langmuir-Hinshewood model with the activation energy of 26.3 kJ mol-1, clearly indicating the nature of surface-mediated reactions. The catalytic reduction of 4-nitrophenol was also examined at various pHs and found that higher pH value retards the hydrolysis rate of borohydride, resulting in lower catalytic efficiency on nitrophenol reduction.
Different morphologies of Au-Fe3O4 heterostructures were further used as potential contrast agent for magnetic resonance imaging (MRI). Since the particle surface coated with a dense organic molecules, 8-armed PEG-Amine were chosen as surface modification agent for phase transfer and bio-functionalize. The water-dispersed Au-Fe3O4 heterostructures were then used as MRI contrast agents, and r2 values of different morphology of NPs were 142.9, 124.1, 112.9, 127.7 mM 1s-1, respectively, for Fe3O4 NPs, 5 nm Au dumbbell-like NPs, 10 nm Au dumbbell-like NPs, and 10 nm Au flower-like NPs. In addition, the Au domain in the heterostructures can serve as optical probe to sense the tau-protein via hybridization-mediated aggregation. The developed nanosensor displays a linear range (0.5-50 ng/mL) with detection limit of 3 ng/mL for tau protein detection. The results obtained in this study clearly demonstrate that the Au-Fe3O4 heterostructures are multifunctional materials which can serve as an ideal platform to apply in the fields of various heterogeneous catalytic processes and biomedical diagnosis.
[1] Costi, R.; Saunders, A. E.; Banin, U., Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angew. Chem. Int. Edit. 2010, 49 (29), 4878-4897.
[2] Lopez-Lorente, A. I.; Simonet, B. M.; Valcarcel, M., Analytical potential of hybrid nanoparticles. Ana.l Bioanal. Chem. 2011, 399 (1), 43-54.
[3] Gao, J. H.; Gu, H. W.; Xu, B., Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Acc. Chem. Res. 2009, 42 (8), 1097-1107.
[4] Pellegrino, T.; Kudera, S.; Liedl, T.; Javier, A. M.; Manna, L.; Parak, W. J., On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications. Small 2005, 1 (1), 48-63.
[5] Cozzoli, P. D.; Pellegrino, T.; Manna, L., Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem Soc Rev 2006, 35 (11), 1195-1208.
[6] Selvan, S. T.; Patra, P. K.; Ang, C. Y.; Ying, J. Y., Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew. Chem. Int. Edit. 2007, 46 (14), 2448-2452.
[7] Zhai, Y. M.; Han, L.; Wang, P.; Li, G. P.; Ren, W.; Liu, L.; Wang, E. K.; Dong, S. J., Superparamagnetic Plasmonic Nanohybrids: Shape-Controlled Synthesis, TEM-Induced Structure Evolution, and Efficient Sunlight-Driven Inactivation of Bacteria. Acs Nano 2011, 5 (11), 8562-8570.
[8] Wood, A.; Giersig, M.; Mulvaney, P., Fermi level equilibration in quantum dot-metal nanojunctions. J. Phys. Chem. B 2001, 105 (37), 8810-8815.
[9] Lee, Y. M.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H., Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles. Angew. Chem. Int. Edit. 2010, 49 (7), 1271-1274.
[10] Li, P.; Wei, Z.; Wu, T.; Peng, Q.; Li, Y. D., Au-ZnO Hybrid Nanopyramids and Their Photocatalytic Properties. J. Am. Chem. Soc. 2011, 133 (15), 5660-5663.
[11] Casavola, M.; Buonsanti, R.; Caputo, G.; Cozzoli, P. D., Colloidal strategies for preparing oxide-based hybrid nanocrystals. Eur. J. Inorg. Chem. 2008, (6), 837-854.
[12] Lu, A. H.; Salabas, E. L.; Schuth, F., Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Edit. 2007, 46 (8), 1222-1244.
[13] Shubayev, V. I.; Pisanic, T. R.; Jin, S. H., Magnetic nanoparticles for theragnostics. Adv. Drug Deliver. Rev. 2009, 61 (6), 467-477.
[14] Terris, B. D.; Thomson, T., Nanofabricated and self-assembled magnetic structures as data storage media. J. Phys. D Appl. Phys. 2005, 38 (12), R199-R222.
[15] Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; Yan, X., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2 (9), 577-583.
[16] Jolivet, J. P.; Chaneac, C.; Tronc, E., Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 2004, (5), 481-487.
[17] Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3 (12), 891-895.
[18] Taniguchi, T.; Nakagawa, K.; Watanabe, T.; Matsushita, N.; Yoshimura, M., Hydrothermal Growth of Fatty Acid Stabilized Iron Oxide Nanocrystals. J. Phys. Chem. C 2009, 113 (3), 839-843.
[19] Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Yang, H. G.; Budihartono, S.; Stahr, F.; Yan, Z. F.; Wang, X. L.; Hao, Z. P.; Lu, G. Q., Fabrication and Size-Selective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure. Adv. Funct. Mater. 2008, 18 (20), 3203-3212.
[20] Shylesh, S.; Schunemann, V.; Thiel, W. R., Magnetically Separable Nanocatalysts: Bridges between Homogeneous and Heterogeneous Catalysis. Angew. Chem. Int. Edit. 2010, 49 (20), 3428-3459.
[21] Corot, C.; Robert, P.; Idee, J. M.; Port, M., Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Deliver. Rev. 2006, 58 (14), 1471-1504.
[22] Thorek, D. L. J.; Chen, A.; Czupryna, J.; Tsourkas, A., Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng. 2006, 34 (1), 23-38.
[23] Wilson, R., The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 2008, 37 (9), 2028-2045.
[24] Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A., Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41 (12), 1578-1586.
[25] Cobley, C. M.; Chen, J. Y.; Cho, E. C.; Wang, L. V.; Xia, Y. N., Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 2011, 40 (1), 44-56.
[26] Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107 (3), 668-677.
[27] Oldenburg, S. J.; Averitt, R. D.; Westcott, S. L.; Halas, N. J., Nanoengineering of optical resonances. Chem. Phys. Lett. 1998, 288 (2-4), 243-247.
[28] Kim, J.; Park, S.; Lee, J. E.; Jin, S. M.; Lee, J. H.; Lee, I. S.; Yang, I.; Kim, J. S.; Kim, S. K.; Cho, M. H.; Hyeon, T., Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew. Chem. Int. Edit. 2006, 45 (46), 7754-7758.
[29] Wang, H.; Brandl, D. W.; Le, F.; Nordlander, P.; Halas, N. J., Nanorice: A hybrid plasmonic nanostructure. Nano Lett.. 2006, 6 (4), 827-832.
[30] Graf, C.; van Blaaderen, A., Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 2002, 18 (2), 524-534.
[31] Lyon, J. L.; Fleming, D. A.; Stone, M. B.; Schiffer, P.; Williams, M. E., Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett.. 2004, 4 (4), 719-723.
[32] Levin, C. S.; Hofmann, C.; Ali, T. A.; Kelly, A. T.; Morosan, E.; Nordlander, P.; Whitmire, K. H.; Halas, N. J., Magnetic-Plasmonic Core-Shell Nanoparticles. Acs Nano 2009, 3 (6), 1379-1388.
[33] Zhang, Q.; Ge, J. P.; Goebl, J.; Hu, Y. X.; Sun, Y. G.; Yin, Y. D., Tailored Synthesis of Superparamagnetic Gold Nanoshells with Tunable Optical Properties. Adv. Mater. 2010, 22 (17), 1905-1909.
[34] Wang, L. Y.; Bai, J. W.; Li, Y. J.; Huang, Y., Multifunctional nanoparticles displaying magnetization and near-IR absorption. Angew. Chem. Int. Edit. 2008, 47 (13), 2439-2442.
[35] Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y. W.; Kim, T.; Kim, T. K.; Lee, I. H.; Paik, S. R.; Hyeon, T., Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J. Am. Chem. Soc. 2006, 128 (33), 10658-10659.
[36] Salazar-Alvarez, G.; Sort, J.; Surinach, S.; Baro, M. D.; Nogues, J., Synthesis and size-dependent exchange bias in inverted core-shell MnO vertical bar Mn3O4 nanoparticles. J. Am. Chem. Soc. 2007, 129 (29), 9102-9108.
[37] Cabot, A.; Puntes, V. F.; Shevchenko, E.; Yin, Y.; Balcells, L.; Marcus, M. A.; Hughes, S. M.; Alivisatos, A. P., Vacancy coalescence during oxidation of iron nanoparticles. J. Am. Chem. Soc. 2007, 129 (34), 10358-10360.
[38] Jeong, U.; Wang, Y. L.; Ibisate, M.; Xia, Y. N., Some new developments in the synthesis, functionalization, and utilization of monodisperse colloidal spheres. Adv. Funct. Mater. 2005, 15 (12), 1907-1921.
[39] Guo, S.; Dong, S.; Wang, E., A General Route to Construct Diverse Multifunctional Fe3O4/Metal Hybrid Nanostructures. Chem.-Eur. J. 2009, 15 (10), 2416-2424.
[40] Goon, I. Y.; Lai, L. M. H.; Lim, M.; Munroe, P.; Gooding, J. J.; Amal, R., Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chem. Mater. 2009, 21 (4), 673-681.
[41] Nadagouda, M. N.; Varma, R. S., A greener synthesis of core (Fe, Cu)-shell (An, Pt, Pd, and Ag) nanocrystals using aqueous vitamin C. Cryst. Growth. Des. 2007, 7 (12), 2582-2587.
[42] Chin, S. F.; Iyer, K. S.; Raston, C. L., Facile and Green Approach To Fabricate Gold and Silver Coated Superparamagnetic Nanoparticles. Cryst. Growth. Des. 2009, 9 (6), 2685-2689.
[43] Xu, Z. C.; Hou, Y. L.; Sun, S. H., Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 2007, 129 (28), 8698-8699.
[44] Wang, L. Y.; Luo, J.; Fan, Q.; Suzuki, M.; Suzuki, I. S.; Engelhard, M. H.; Lin, Y. H.; Kim, N.; Wang, J. Q.; Zhong, C. J., Monodispersed core-shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 2005, 109 (46), 21593-21601.
[45] Wang, L. Y.; Park, H. Y.; Lim, S. I. I.; Schadt, M. J.; Mott, D.; Luo, J.; Wang, X.; Zhong, C. J., Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles. J. Mater. Chem. 2008, 18 (23), 2629-2635.
[46] Liu, H. L.; Sonn, C. H.; Wu, J. H.; Lee, K. M.; Kim, Y. K., Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials 2008, 29 (29), 4003-4011.
[47] Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P., Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 2004, 304 (5671), 711-714.
[48] Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P., Gold/Iron Oxide Core/Hollow-Shell Nanoparticles. Adv. Mater. 2008, 20 (22), 4323-4329.
[49] Xuan, S. H.; Zhou, Y. F.; Xu, H. J.; Jiang, W. Q.; Leung, K. C. F.; Gong, X. L., One step method to encapsulate nanocatalysts within Fe3O4 nanoreactors. J. Mater. Chem. 2011, 21 (39), 15398-15404.
[50] Xu, C.; Xie, J.; Ho, D.; Wang, C.; Kohler, N.; Walsh, E. G.; Morgan, J. R.; Chin, Y. E.; Sun, S., Au-Fe3O4 dumbbell nanoparticles as dual-functional probes. Angew. Chem. Int. Edit. 2008, 47 (1), 173-176.
[51] Li, Y. Q.; Zhang, G.; Nurmikko, A. V.; Sun, S. H., Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Lett.. 2005, 5 (9), 1689-1692.
[52] Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Gozzo, F.; Garcia-Hernandez, M.; Garcia, M. A.; Cingolani, R.; Cozzoli, P. D., Architectural Control of Seeded-Grown Magnetic-Semicondutor Iron Oxide-TiO2 Nanorod Heterostructures: The Role of Seeds in Topology Selection. J. Am. Chem. Soc. 2010, 132 (7), 2437-2464.
[53] Mamidala, V.; Xing, G. C.; Ji, W., Surface Plasmon Enhanced Third-Order Nonlinear Optical Effects in Ag-Fe3O4 Nanocomposites. J. Phys. Chem. C 2010, 114 (51), 22466-22471.
[54] Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. H., Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5 (2), 379-382.
[55] Kwon, K. W.; Shim, M., gamma-Fe2O3/II-VI sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 2005, 127 (29), 10269-10275.
[56] Gu, H. W.; Yang, Z. M.; Gao, J. H.; Chang, C. K.; Xu, B., Heterodimers of nanoparticles: Formation at a liquid-liquid interface and particle-specific surface modification by functional molecules. J. Am. Chem. Soc. 2005, 127 (1), 34-35.
[57] Pan, Y.; Gao, J. H.; Zhang, B.; Zhang, X. X.; Xu, B., Colloidosome-based Synthesis of a Multifunctional Nanostructure of Silver and Hollow Iron Oxide Nanoparticles. Langmuir 2010, 26 (6), 4184-4187.
[58] Wang, C.; Xu, C. J.; Zeng, H.; Sun, S. H., Recent Progress in Syntheses and Applications of Dumbbell-like Nanoparticles. Adv. Mater. 2009, 21 (30), 3045-3052.
[59] Shi, W. L.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N., A general approach to binary and ternary hybrid nanocrystals. Nano Lett.. 2006, 6 (4), 875-881.
[60] Zeng, H.; Sun, S. H., Syntheses, properties and potential applications of multicomponent magnetic nanoparticles. Adv. Funct. Mater. 2008, 18 (3), 391-400.
[61] Wu, B. H.; Zhang, H.; Chen, C.; Lin, S. C.; Zheng, N. F., Interfacial Activation of Catalytically Inert Au (6.7 nm)-Fe3O4 Dumbbell Nanoparticles for CO Oxidation. Nano Res. 2009, 2 (12), 975-983.
[62] Choi, S. H.; Bin Na, H.; Park, Y. I.; An, K.; Kwon, S. G.; Jang, Y.; Park, M.; Moon, J.; Son, J. S.; Song, I. C.; Moon, W. K.; Hyeon, T., Simple and Generalized Synthesis of Oxide-Metal Heterostructured Nanoparticles and their Applications in Multimodal Biomedical Probes. J. Am. Chem. Soc. 2008, 130 (46), 15573-15580.
[63] Zhai, Y. M.; Jin, L. H.; Wang, P.; Dong, S. J., Dual-functional Au-Fe3O4 dumbbell nanoparticles for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect. Chem. Commun. 2011, 47 (29), 8268-8270.
[64] George, C.; Dorfs, D.; Bertoni, G.; Falqui, A.; Genovese, A.; Pellegrino, T.; Roig, A.; Quarta, A.; Comparelli, R.; Curri, M. L.; Cingolani, R.; Manna, L., A Cast-Mold Approach to Iron Oxide and Pt/Iron Oxide Nanocontainers and Nanoparticles with a Reactive Concave Surface. J. Am. Chem. Soc. 2011, 133 (7), 2205-2217.
[65] Kirui, D. K.; Rey, D. A.; Batt, C. A., Gold hybrid nanoparticles for targeted phototherapy and cancer imaging. Nanotechnology 2010, 21 (10), 105105.
[66] Wei, Y. H.; Klajn, R.; Pinchuk, A. O.; Grzybowski, B. A., Synthesis, Shape Control, and Optical Properties of Hybrid Au/Fe3O4 "Nanoflowers". Small 2008, 4 (10), 1635-1639.
[67] Kamei, K.; Mukai, Y.; Kojima, H.; Yoshikawa, T.; Yoshikawa, M.; Kiyohara, G.; Yamamoto, T. A.; Yoshioka, Y.; Okada, N.; Seino, S.; Nakagawa, S., Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials 2009, 30 (9), 1809-1814.
[68] Kojima, H.; Mukai, Y.; Yoshikawa, M.; Kamei, K.; Yoshikawa, T.; Morita, M.; Inubushi, T.; Yamamoto, T. A.; Yoshioka, Y.; Okada, N.; Seino, S.; Nakagawa, S., Simple PEG Conjugation of SPIO via an Au-S Bond Improves Its Tumor Targeting Potency as a Novel MR Tumor Imaging Agent. Bioconjugate Chem. 2010, 21 (6), 1026-1031.
[69] Nash, M. A.; Yager, P.; Hoffman, A. S.; Stayton, P. S., Mixed Stimuli-Responsive Magnetic and Gold Nanoparticle System for Rapid Purification, Enrichment, and Detection of Biomarkers. Bioconjugate Chem. 2010, 21 (12), 2197-2204.
[70] Jun, Y. W.; Choi, J. S.; Cheon, J., Heterostructured magnetic nanoparticles: their versatility and high performance capabilities. Chem. Commun. 2007, (12), 1203-1214.
[71] Hao, R.; Xing, R. J.; Xu, Z. C.; Hou, Y. L.; Gao, S.; Sun, S. H., Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Adv. Mater. 2010, 22 (25), 2729-2742.
[72] Zhou, T.; Wu, B. Y.; Xing, D., Bio-modified Fe3O4 core/Au shell nanoparticles for targeting and multimodal imaging of cancer cells. J. Mater. Chem. 2012, 22 (2), 470-477.
[73] Garcia, I.; Gallo, J.; Genicio, N.; Padro, D.; Penades, S., Magnetic Glyconanoparticles as a Versatile Platform for Selective Immunolabeling and Imaging of Cells. Bioconjugate Chem. 2011, 22 (2), 264-273.
[74] Ji, X. J.; Shao, R. P.; Elliott, A. M.; Stafford, R. J.; Esparza-Coss, E.; Bankson, J. A.; Liang, G.; Luo, Z. P.; Park, K.; Markert, J. T.; Li, C., Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J. Phys. Chem. C 2007, 111 (17), 6245-6251.
[75] Cho, S. J.; Jarrett, B. R.; Louie, A. Y.; Kauzlarich, S. M., Gold-coated iron nanoparticles: a novel magnetic resonance agent for T-1 and T-2 weighted imaging. Nanotechnology 2006, 17 (3), 640-644.
[76] Berret, J. F.; Schonbeck, N.; Gazeau, F.; El Kharrat, D.; Sandre, O.; Vacher, A.; Airiau, M., Controlled clustering of superparamagnetic nanoparticles using block copolymers: Design of new contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 2006, 128 (5), 1755-1761.
[77] Wang, C. G.; Chen, J.; Talavage, T.; Irudayaraj, J., Gold Nanorod/Fe3O4 Nanoparticle "Nano-Pearl-Necklaces" for Simultaneous Targeting, Dual-Mode Imaging, and Photothermal Ablation of Cancer Cells. Angew. Chem. Int. Edit. 2009, 48 (15), 2759-2763.
[78] Kim, D.; Yu, M. K.; Lee, T. S.; Park, J. J.; Jeong, Y. Y.; Jon, S., Amphiphilic polymer-coated hybrid nanoparticles as CT/MRI dual contrast agents. Nanotechnology 2011, 22 (15), 155101.
[79] Ma, L. L.; Feldman, M. D.; Tam, J. M.; Paranjape, A. S.; Cheruku, K. K.; Larson, T. A.; Tam, J. O.; Ingram, D. R.; Paramita, V.; Villard, J. W.; Jenkins, J. T.; Wang, T.; Clarke, G. D.; Asmis, R.; Sokolov, K.; Chandrasekar, B.; Milner, T. E.; Johnston, K. P., Small Multifunctional Nanoclusters (Nanoroses) for Targeted Cellular Imaging and Therapy. Acs Nano 2009, 3 (9), 2686-2696.
[80] Kim, D.; Jeong, Y. Y.; Jon, S., A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer. Acs Nano 2010, 4 (7), 3689-3696.
[81] Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R., Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer. Nano Lett. 2008, 8 (12), 4593-4596.
[82] Narayanan, S.; Sathy, B. N.; Mony, U.; Koyakutty, M.; Nair, S. V.; Menon, D., Biocompatible Magnetite/Gold Nanohybrid Contrast Agents via Green Chemistry for MRI and CT Bioimaging. Acs Appl. Mater. Inter. 2012, 4 (1), 251-260.
[83] Kim, D.; Kim, J. W.; Jeong, Y. Y.; Jon, S., Antibiofouling Polymer Coated Gold@Iron Oxide Nanoparticle (GION) as a Dual Contrast Agent for CT and MRI. B. Korean Chem. Soc. 2009, 30 (8), 1855-1857.
[84] Jin, S.; Ye, K. M., Nanoparticle-mediated drug delivery and gene therapy. Biotechnol. Progr. 2007, 23 (1), 32-41.
[85] Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M., Gold nanoparticles in delivery applications. Adv. Drug Deliver. Rev. 2008, 60 (11), 1307-1315.
[86] Llevot, A.; Astruc, D., Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem. Soc. Rev. 2012, 41 (1), 242-257.
[87] Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T., Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliver. Rev. 2011, 63 (1-2), 24-46.
[88] Veiseh, O.; Gunn, J. W.; Zhang, M. Q., Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliver. Rev. 2010, 62 (3), 284-304.
[89] Zhao, W.; Brook, M. A.; Li, Y. F., Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays. Chembiochem 2008, 9 (15), 2363-2371.
[90] Wang, Z. X.; Ma, L. N., Gold nanoparticle probes. Coordin. Chem. Rev. 2009, 253 (11-12), 1607-1618.
[91] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L., One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120 (9), 1959-1964.
[92] Huang, C. C.; Chang, H. T., Selective gold-nanoparticle-based "turn-on" fluorescent sensors for detection of mercury(II) in aqueous solution. Anal. Chem. 2006, 78 (24), 8332-8338.
[93] Dubertret, B.; Calame, M.; Libchaber, A. J., Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol. 2001, 19 (4), 365-370.
[94] Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26 (1), 83-90.
[95] Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H., Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection. Adv. Funct. Mater. 2010, 20 (17), 2815-2824.
[96] Liang, G. H.; Cai, S. Y.; Zhang, P.; Peng, Y. Y.; Chen, H.; Zhang, S.; Kong, J. L., Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles. Anal. Chim. Acta 2011, 689 (2), 243-249.
[97] Bao, F.; Yao, J. L.; Gu, R. A., Synthesis of Magnetic Fe2O3/Au Core/Shell Nanoparticles for Bioseparation and Immunoassay Based on Surface-Enhanced Raman Spectroscopy. Langmuir 2009, 25 (18), 10782-10787.
[98] Wang, J. A.; Sun, Y.; Wang, L. Y.; Zhu, X. N.; Zhang, H. Q.; Song, D. Q., Surface plasmon resonance biosensor based on Fe3O4/Au nanocomposites. Colloid. Surface. B 2010, 81 (2), 600-606.
[99] Mosier-Boss, P. A.; Lieberman, S. H., Surface-enhanced Raman spectroscopy substrate composed of chemically modified gold colloid particles immobilized on magnetic microparticles. Ana.l Chem. 2005, 77 (4), 1031-1037.
[100] Zhang, H.; Harpster, M. H.; Wilson, W. C.; Johnson, P. A., Surface-Enhanced Raman Scattering Detection of DNAs Derived from Virus Genomes Using Au-Coated Paramagnetic Nanoparticles. Langmuir 2012, 28 (8), 4030-4037.
[101] Xie, J.; Zhang, F.; Aronova, M.; Zhu, L.; Lin, X.; Quan, Q. M.; Liu, G.; Zhang, G. F.; Choi, K. Y.; Kim, K.; Sun, X. L.; Lee, S.; Sun, S. H.; Leapman, R.; Chen, X. Y., Manipulating the Power of an Additional Phase: A Flower-like Au-Fe3O4 Optical Nanosensor for Imaging Protease Expressions In vivo. Acs Nano 2011, 5 (4), 3043-3051.
[102] Qiu, J. D.; Xiong, M.; Liang, R. P.; Peng, H. P.; Liu, F., Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application. Biosens. Bioelectron. 2009, 24 (8), 2649-2653.
[103] Qiu, J. D.; Peng, H. P.; Liang, R. P.; Xia, X. H., Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry. Biosens. Bioelectron. 2010, 25 (6), 1447-1453.
[104] Zhuo, Y.; Yuan, P. X.; Yuan, R.; Chai, Y. Q.; Hong, C. L., Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 2009, 30 (12), 2284-2290.
[105] Liang, W. B.; Yi, W. J.; Li, Y.; Zhang, Z. J.; Yang, M. Z.; Hu, C. M.; Chen, A., A novel magnetic Fe3O4@gold composite nanomaterial: Synthesis and application in regeneration-free immunosensor. Mater. Lett. 2010, 64 (23), 2616-2619.
[106] Gan, N.; Wu, Y. Z.; Hu, F. T.; Li, T. H.; Zheng, L.; Cao, Y. T., One Novel Nano Magnetic Fe3O4/ZrO2/nano Au Composite Membrane Modified Amperometric Immunosensor for alpha-Fetoprotein in Human Serum. Int. J. Electrochem. Sc. 2011, 6 (2), 461-474.
[107] Wei, Q.; Xiang, Z.; He, J.; Wang, G. L.; Li, H.; Qian, Z. Y.; Yang, M. H., Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. Biosens. Bioelectron. 2010, 26 (2), 627-631.
[108] Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B., Low-Temperature Oxidation of Co over Gold Supported on TiO2, Alpha-Fe2O3, and Co3O4. J. Catal. 1993, 144 (1), 175-192.
[109] Orlov, A.; Jefferson, D. A.; Macleod, N.; Lambert, R. M., Photocatalytic properties of TiO2 modified with gold nanoparticles in the degradation of 4-chlorophenol in aqueous solution. Catal. Lett. 2004, 92 (1-2), 41-47.
[110] Praharaj, S.; Nath, S.; Ghosh, S. K.; Kundu, S.; Pal, T., Immobilization and recovery of Au nanoparticles from anion exchange resin: Resin-bound nanoparticle matrix as a catalyst for the reduction of 4-nitrophenol. Langmuir 2004, 20 (23), 9889-9892.
[111] Gong, J. L.; Mullins, C. B., Surface Science Investigations of Oxidative Chemistry on Gold. Acc. Chem. Res. 2009, 42 (8), 1063-1073.
[112] Yin, H. F.; Wang, C.; Zhu, H. G.; Overbury, S. H.; Sun, S. H.; Dai, S., Colloidal deposition synthesis of supported gold nanocatalysts based on Au-Fe3O4 dumbbell nanoparticles. Chem. Commun. 2008, (36), 4357-4359.
[113] Lin, F. H.; Doong, R. A., Bifunctional Au-Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction. J. Phys. Chem. C 2011, 115 (14), 6591-6598.
[114] Hung, W. H.; Aykol, M.; Valley, D.; Hou, W. B.; Cronin, S. B., Plasmon Resonant Enhancement of Carbon Monoxide Catalysis. Nano Lett.. 2010, 10 (4), 1314-1318.
[115] Wu, Y. P.; Zhang, T.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X., A facile approach to Fe3O4@Au nanoparticles with magnetic recyclable catalytic properties. Mater. Res. Bull. 2010, 45 (4), 513-517.
[116] Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D., Core-Satellite Nanocomposite Catalysts Protected by a Porous Silica Shell: Controllable Reactivity, High Stability, and Magnetic Recyclability. Angew. Chem. Int. Edit. 2008, 47 (46), 8924-8928.
[117] Xuan, S. H.; Wang, Y. X. J.; Yu, J. C.; Leung, K. C. F., Preparation, Characterization, and Catalytic Activity of Core/Shell Fe3O4@Polyaniline@Au Nanocomposites. Langmuir 2009, 25 (19), 11835-11843.
[118] Deng, Y. H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y., Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System. J. Am. Chem. Soc. 2010, 132 (24), 8466-8473.
[119] Ge, J. P.; Huynh, T.; Hu, Y. P.; Yin, Y. D., Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst-supports. Nano Lett.. 2008, 8 (3), 931-934.
[120] Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108 (6), 2064-2110.
[121] Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H., Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38 (9), 2532-2542.
[122] Deng, H.; Li, X. L.; Peng, Q.; Wang, X.; Chen, J. P.; Li, Y. D., Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Edit. 2005, 44 (18), 2782-2785.
[123] Si, S. F.; Li, C. H.; Wang, X.; Yu, D. P.; Peng, Q.; Li, Y. D., Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth. Des. 2005, 5 (2), 391-393.
[124] Sun, S. H.; Zeng, H., Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002, 124 (28), 8204-8205.
[125] Park, J.; Lee, E.; Hwang, N. M.; Kang, M. S.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kini, J. Y.; Park, J. H.; Hyeon, T., One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Edit. 2005, 44 (19), 2872-2877.
[126] Kovalenko, M. V.; Bodnarchuk, M. I.; Lechner, R. T.; Hesser, G.; Schaffler, F.; Heiss, W., Fatty acid salts as stabilizers in size- and shape-controlled nanocrystal synthesis: The case of inverse spinel iron oxide. J. Am. Chem. Soc. 2007, 129 (20), 6352-6353.
[127] Shavel, A.; Rodriguez-Gonzalez, B.; Pacifico, J.; Spasova, M.; Farle, M.; Liz-Marzan, L. M., Shape Control in Iron Oxide Nanocrystal Synthesis, Induced by Trioctylammonium Ions. Chem. Mater. 2009, 21 (7), 1326-1332.
[128] Zeng, H.; Rice, P. M.; Wang, S. X.; Sun, S. H., Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc. 2004, 126 (37), 11458-11459.
[129] Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126 (1), 273-279.
[130] Jana, N. R.; Chen, Y. F.; Peng, X. G., Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 2004, 16 (20), 3931-3935.
[131] Cheon, J. W.; Kang, N. J.; Lee, S. M.; Lee, J. H.; Yoon, J. H.; Oh, S. J., Shape evolution of single-crystalline iron oxide nanocrystals. J. Am. Chem. Soc. 2004, 126 (7), 1950-1951.
[132] Jiang, J.; Gu, H. W.; Shao, H. L.; Devlin, E.; Papaefthymiou, G. C.; Ying, J. Y., Manipulation Bifunctional Fe3O4-Ag Heterodimer Nanoparticles for Two-Photon Fluorescence Imaging and Magnetic Manipulation. Adv. Mater .2008, 20 (23), 4403-4407.
[133] Peng, S.; Lei, C. H.; Ren, Y.; Cook, R. E.; Sun, Y. G., Plasmonic/Magnetic Bifunctional Nanoparticles. Angew. Chem. Int. Edit. 2011, 50 (14), 3158-3163.
[134] Jang, Y.; Chung, J.; Kim, S.; Jun, S. W.; Kim, B. H.; Lee, D. W.; Kim, B. M.; Hyeon, T., Simple synthesis of Pd-Fe3O4 heterodimer nanocrystals and their application as a magnetically recyclable catalyst for Suzuki cross-coupling reactions. Phys. Chem. Chem. Phys. 2011, 13 (7), 2512-2516.
[135] Peng, S.; Lee, Y. M.; Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H., A Facile Synthesis of Monodisperse Au Nanoparticles and Their Catalysis of CO Oxidation. Nano Res. 2008, 1 (3), 229-234.
[136] Chen, W.; Yu, R.; Li, L. L.; Wang, A. N.; Peng, Q.; Li, Y. D., A Seed-Based Diffusion Route to Monodisperse Intermetallic CuAu Nanocrystals. Angew. Chem. Int. Edit. 2010, 49 (16), 2917-2921.
[137] Mazumder, V.; Sun, S. H., Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. J. Am. Chem. Soc. 2009, 131 (13), 4588-4589.
[138] Zhen, G. L.; Muir, B. W.; Moffat, B. A.; Harbour, P.; Murray, K. S.; Moubaraki, B.; Suzuki, K.; Madsen, I.; Agron-Olshina, N.; Waddington, L.; Mulvaney, P.; Hartley, P. G., Comparative Study of the Magnetic Behavior of Spherical and Cubic Superparamagnetic Iron Oxide Nanoparticles. J. Phys. Chem. C 2011, 115 (2), 327-334.
[139] Xie, J.; Peng, S.; Brower, N.; Pourmand, N.; Wang, S. X.; Sun, S. H., One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure Appl. Chem. 2006, 78 (5), 1003-1014.
[140] Sun, S. H., Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater .2006, 18 (4), 393-403.
[141] Xu, Z. C.; Shen, C. M.; Hou, Y. L.; Gao, H. J.; Sun, S. S., Oleylamine as Both Reducing Agent and Stabilizer in a Facile Synthesis of Magnetite Nanoparticles. Chem. Mater. 2009, 21 (9), 1778-1780.
[142] Shen, L. F.; Laibinis, P. E.; Hatton, T. A., Bilayer surfactant stabilized magnetic fluids: Synthesis and interactions at interfaces. Langmuir 1999, 15 (2), 447-453.
[143] Morales, M. P.; Veintemillas-Verdaguer, S.; Montero, M. I.; Serna, C. J.; Roig, A.; Casas, L.; Martinez, B.; Sandiumenge, F., Surface and internal spin canting in gamma-Fe2O3 nanoparticles. Chem. Mater. 1999, 11 (11), 3058-3064.
[144] Cornell M. R.; Schwertmann, U., The Iron Oxides. VCH: New York, 1996.
[145] Lee, Y.; Loew, A.; Sun, S. H., Surface- and Structure-Dependent Catalytic Activity of Au Nanoparticles for Oxygen Reduction Reaction. Chem. Mater. 2010, 22 (3), 755-761.
[146] Daniel, M. C.; Astruc, D., Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104 (1), 293-346.
[147] Hiramatsu, H.; Osterloh, F. E., A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16 (13), 2509-2511.
[148] Zhang, H. T.; Ding, J.; Chow, G. M., Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. Langmuir 2008, 24 (2), 375-378.
[149] Teng, X. W.; Yang, H., Synthesis of platinum multipods: An induced anisotropic growth. Nano Lett. 2005, 5 (5), 885-891.
[150] Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P. D., Pt nanocrystals: Shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 2005, 109 (1), 188-193.
[151] Bus, E.; van Bokhoven, J. A., Electronic and geometric structures of supported platinum, gold, and platinum - Gold catalysts. J. Phys. Chem. C 2007, 111 (27), 9761-9768.
[152] Figueroa, S. J. A.; Stewart, S. J.; Rueda, T.; Hernando, A.; De la Presa, P., Thermal Evolution of Pt-Rich FePt/Fe3O4 Heterodimers Studied Using X-ray Absorption Near-Edge Spectroscopy. J. Phys. Chem. C 2011, 115 (13), 5500-5508.
[153] MacDonald, M. A.; Zhang, P.; Chen, N.; Qian, H. F.; Jin, R. C., Solution-Phase Structure and Bonding of Au38(SR)24 Nanoclusters from X-ray Absorption Spectroscopy. J. Phys. Chem. C 2011, 115 (1), 65-69.
[154] Zhang, P.; Sham, T. K., X-Ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: The interplay of size and surface effects. Phys. Rev. Lett. 2003, 90 (24), 245502.
[155] Chen, H. M.; Liu, R. S.; Asakura, K.; Jang, L. Y.; Lee, J. F., Controlling length of gold nanowires with large-scale: X-ray absorption spectroscopy approaches to the growth process. J. Phys. Chem. C 2007, 111 (50), 18550-18557.
[156] Corrias, A.; Mountjoy, G.; Loche, D.; Puntes, V.; Falqui, A.; Zanella, M.; Parak, W. J.; Casula, M. F., Identifying Spinel Phases in Nearly Monodisperse Iron Oxide Colloidal Nanocrystal. J. Phys. Chem. C 2009, 113 (43), 18667-18675.
[157] Jimenez-Lam, S. A.; Cardenas-Galindo, M. G.; Handy, B. E.; Gomez, S. A.; Fuentes, G. A.; Fierro-Gonzalez, J. C., Influence of Supported Gold on the Dynamics of Reduction and Crystallization of Iron Oxides: A Dispersive X-ray Absorption Near Edge Structure Spectroscopy and X-ray Diffraction Study. J. Phys. Chem. C 2011, 115 (47), 23519-23526.
[158] Zhang, K. H.; Wang, W.; Cheng, W. D.; Xing, X. Q.; Mo, G.; Cai, Q.; Chen, Z. J.; Wu, Z. H., Temperature-Induced Interfacial Change in Au@SiO2 Core-Shell Nanoparticles Detected by Extended X-ray Absorption Fine Structure. J. Phys. Chem. C 2010, 114 (1), 41-49.
[159] Yueh, C. L.; Jan, J. C.; Chiou, J. W.; Pong, W. F.; Tsai, M. H.; Chang, Y. K.; Chen, Y. Y.; Lee, Y. F.; Tseng, P. K.; Wei, S. L.; Wen, C. Y.; Chen, L. C.; Chen, K. H., Electronic structure of the Fe-layer-catalyzed carbon nanotubes studied by x-ray-absorption spectroscopy. Appl. Phys. Lett. 2001, 79 (19), 3179-3181.
[160] Chen, H. M.; Liu, R. S., Controlling length and monitoring growth of gold nanorods. J. Chin. Chem. Soc-Taip. 2006, 53 (6), 1343-1348.
[161] Lopez-Cartes, C.; Rojas, T. C.; Litran, R.; Martinez-Martinez, D.; de la Fuente, J. M.; Penades, S.; Fernandez, A., Gold nanoparticles with different capping systems: An electronic and structural XAS analysis. J. Phys. Chem. B 2005, 109 (18), 8761-8766.
[162] Coulthard, I.; Degen, S.; Zhu, Y. J.; Sham, T. K., Gold nanoclusters reductively deposited on porous silicon: morphology and electronic structures. Can. J. Chem. 1998, 76 (11), 1707-1716.
[163] Benfield, R. E.; Grandjean, D.; Kroll, M.; Pugin, R.; Sawitowski, T.; Schmid, G., Structure and bonding of gold metal clusters, colloids, and nanowires studied by EXAFS, XANES, and WAXS. J. Phys. Chem. B 2001, 105 (10), 1961-1970.
[164] Haider, P.; Kimmerle, B.; Krumeich, F.; Kleist, W.; Grunwaldt, J. D.; Baiker, A., Gold-catalyzed aerobic oxidation of benzyl alcohol: Effect of gold particle size on activity and selectivity in different solvents. Catal. Lett. 2008, 125 (3-4), 169-176.
[165] Apai, G.; Hamilton, J. F.; Stohr, J.; Thompson, A., Extended X-Ray-Absorption Fine-Structure of Small Cu and Ni Clusters - Binding-Energy and Bond-Length Changes with Cluster Size. Phys. Rev. Lett. 1979, 43 (2), 165-169.
[166] Weiss, W.; Ranke, W., Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Prog. Surf. Sci. 2002, 70 (1-3), 1-151.
[167] Michaelson, H. B., The work function of the elements and its periodicity. J. Appl. Phys. 1997, 48 (11), 6.
[168] Wang, C.; Daimon, H.; Sun, S. H., Dumbbell-like Pt-Fe3O4 Nanoparticles and Their Enhanced Catalysis for Oxygen Reduction Reaction. Nano Lett. 2009, 9 (4), 1493-1496.
[169] Chen, H. M.; Liu, R. S.; Jang, L. Y.; Lee, J. F.; Hu, S. F., Characterization of core-shell type and alloy Ag/Au bimetallic clusters by using extended X-ray absorption fine structure spectroscopy. Chem. Phys. Lett. 2006, 421 (1-3), 118-123.
[170] Kronawitter, C. X.; Bakke, J. R.; Wheeler, D. A.; Wang, W. C.; Chang, C. L.; Antoun, B. R.; Zhang, J. Z.; Guo, J. H.; Bent, S. F.; Mao, S. S.; Vayssieres, L., Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructures. Nano Lett. 2011, 11 (9), 3855-3861.
[171] Chen, L. X.; Liu, T.; Thurnauer, M. C.; Csencsits, R.; Rajh, T., Fe2O3 nanoparticle structures investigated by X-ray absorption near-edge structure, surface modifications, and model calculations. J. Phys. Chem. B 2002, 106 (34), 8539-8546.
[172] Sonavane, S. U.; Gawande, M. B.; Deshpande, S. S.; Venkataraman, A.; JayaraM, R. V., Chemoselective transfer hydrogenation reactions over nanosized gamma-Fe2O3 catalyst prepared by novel combustion route. Catal. Commun. 2007, 8 (11), 1803-1806.
[173] Uberoi, V.; Bhattacharya, S. K., Toxicity and degradability of nitrophenols in anaerobic systems. Water Environ. Res. 1997, 69 (2), 146-156.
[174] Cho, Y. S.; Lee, B. U.; Oh, K. H., Simultaneous degradation of nitroaromatic compounds TNT, RDX, atrazine, and simazine by Pseudomonas putida HK-6 in bench-scale bioreactors. J. Chem. Technol. Biot. 2008, 83 (9), 1211-1217.
[175] Dillert, R.; Brandt, M.; Fornefett, I.; Siebers, U.; Bahnemann, D., Photocatalytic Degradation of Trinitrotoluene and Other Nitroaromatic Compounds. Chemosphere 1995, 30 (12), 2333-2341.
[176] Lee, C. C.; Doong, R. A., Dechlorination of tetrachloroethylene in aqueous solutions using metal-modified zerovalent silicon. Environ. Sci. Technol. 2008, 42 (13), 4752-4757.
[177] Parshetti, G. K.; Doong, R. A., Dechlorination and photodegradation of trichloroethylene by Fe/TiO2 nanocomposites in the presence of nickel ions under anoxic conditions. Appl. Catal. B-Environ. 2010, 100 (1-2), 116-123.
[178] Kundu, S.; Wang, K.; Liang, H., Size-Selective Synthesis and Catalytic Application of Polyelectrolyte Encapsulated Gold Nanoparticles Using Microwave Irradiation. J. Phys. Chem. C 2009, 113 (13), 5157-5163.
[179] Panigrahi, S.; Basu, S.; Praharaj, S.; Pande, S.; Jana, S.; Pal, A.; Ghosh, S. K.; Pal, T., Synthesis and size-selective catalysis by supported gold nanoparticles: Study on heterogeneous and homogeneous catalytic process. J. Phys. Chem. C 2007, 111 (12), 4596-4605.
[180] Sau, T. K.; Rogach, A. L.; Jackel, F.; Klar, T. A.; Feldmann, J., Properties and Applications of Colloidal Nonspherical Noble Metal Nanoparticles. Adv. Mater. 2010, 22 (16), 1805-1825.
[181] Haruta, M.; Date, M., Advances in the catalysis of Au nanoparticles. Appl. Catal. a-Gen. 2001, 222 (1-2), 427-437.
[182] Zeng, J.; Zhang, Q.; Chen, J. Y.; Xia, Y. N., A Comparison Study of the Catalytic Properties of Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett. 2010, 10 (1), 30-35.
[183] Hutchings, G. J., Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis 2008, 48 (1-4), 55-59.
[184] Chen, M. S.; Goodman, D. W., The structure of catalytically active gold on titania. Science 2004, 306 (5694), 252-255.
[185] Comotti, M.; Li, W. C.; Spliethoff, B.; Schuth, F., Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc.2006, 128 (3), 917-924.
[186] Tang, S. C.; Vongehr, S.; Meng, X. K., Controllable incorporation of Ag and Ag-Au nanoparticles in carbon spheres for tunable optical and catalytic properties. J. Mater. Chem. 2010, 20 (26), 5436-5445.
[187] Lim, C. W.; Lee, I. S., Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 2010, 5 (5), 412-434.
[188] Zhu, Y. H.; Stubbs, L. P.; Ho, F.; Liu, R. Z.; Ship, C. P.; Maguire, J. A.; Hosmane, N. S., Magnetic Nanocomposites: A New Perspective in Catalysis. Chemcatchem 2010, 2 (4), 365-374.
[189] Polshettiwar, V.; Varma, R. S., Green chemistry by nano-catalysis. Green Chem. 2010, 12 (5), 743-754.
[190] Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H., A General Approach to Noble Metal-Metal Oxide Dumbbell Nanoparticles and Their Catalytic Application for CO Oxidation. Chem. Mater. 2010, 22 (10), 3277-3282.
[191] Lee, Y. M.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H., Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles. Angew. Chem. Int. Edit. 2010, 49 (7), 1271-1274.
[192] Lopes, G.; Vargas, J. M.; Sharma, S. K.; Beron, F.; Pirota, K. R.; Knobel, M.; Rettori, C.; Zysler, R. D., Ag-Fe3O4 Dimer Colloidal Nanoparticles: Synthesis and Enhancement of Magnetic Properties. J. Phys. Chem. C 2010, 114 (22), 10148-10152.
[193] Frey, N. A.; Phan, M. H.; Srikanth, H.; Srinath, S.; Wang, C.; Sun, S., Interparticle interactions in coupled Au-Fe3O4 nanoparticles. J. Appl. Phys. 2009, 105 (7).
[194] Choi, J. S.; Jun, Y. W.; Yeon, S. I.; Kim, H. C.; Shin, J. S.; Cheon, J., Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 2006, 128 (50), 15982-15983.
[195] Jana, S.; Ghosh, S. K.; Nath, S.; Pande, S.; Praharaj, S.; Panigrahi, S.; Basu, S.; Endo, T.; Pal, T., Synthesis of silver nano shell-coated cationic polystyrene beads: A solid phase catalyst for the reduction of 4-nitrophenol. Appl. Catal. a-Gen. 2006, 313 (1), 41-48.
[196] Dotzauer, D. M.; Dai, J. H.; Sun, L.; Bruening, M. L., Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett. 2006, 6 (10), 2268-2272.
[197] Huang, J. F.; Vongehr, S.; Tang, S. C.; Lu, H. M.; Shen, J. C.; Meng, X. K., Ag Dendrite-Based Au/Ag Bimetallic Nanostructures with Strongly Enhanced Catalytic Activity. Langmuir 2009, 25 (19), 11890-11896.
[198] Pradhan, N.; Pal, A.; Pal, T., Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir 2001, 17 (5), 1800-1802.
[199] Wessels, J. S. C., Mechanism of the reduction of organic nitro compounds by chloroplasts. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis 1965, 109 (2), 357-371.
[200] Hayakawa, K.; Yoshimura, T.; Esumi, K., Preparation of gold-dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol. Langmuir 2003, 19 (13), 5517-5521.
[201] Rashid, M. H.; Bhattacharjee, R. R.; Kotal, A.; Mandal, T. K., Synthesis of spongy gold nanocrystals with pronounced catalytic activities. Langmuir 2006, 22 (17), 7141-7143.
[202] Lee, J.; Park, J. C.; Song, H., A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20 (8), 1523-1528.
[203] Huang, X. Q.; Guo, C. Y.; Zuo, L. Q.; Zheng, N. F.; Stucky, G. D., An Assembly Route to Inorganic Catalytic Nanoreactors Containing Sub-10-nm Gold Nanoparticles with Anti-Aggregation Properties. Small 2009, 5 (3), 361-365.
[204] Chang, Y. C.; Chen, D. H., Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. J. Hazard. Mater. 2009, 165 (1-3), 664-669.
[205] D'Amours, M.; Belanger, D., Stability of substituted phenyl groups electrochemically grafted at carbon electrode surface. J. Physl Chem. B 2003, 107 (20), 4811-4817.
[206] Wunder, S.; Polzer, F.; Lu, Y.; Mei, Y.; Ballauff, M., Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes. J. Phys. Chem. C 2010, 114 (19), 8814-8820.
[207] Wu, H.; Huang, X.; Gao, M. M.; Liao, X. P.; Shi, B., Polyphenol-grafted collagen fiber as reductant and stabilizer for one-step synthesis of size-controlled gold nanoparticles and their catalytic application to 4-nitrophenol reduction. Green Chem. 2011, 13 (3), 651-658.
[208] Saha, S.; Pal, A.; Kundu, S.; Basu, S.; Pal, T., Photochemical Green Synthesis of Calcium-Alginate-Stabilized Ag and Au Nanoparticles and Their Catalytic Application to 4-Nitrophenol Reduction. Langmuir 2010, 26 (4), 2885-2893.
[209] Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D., Effective approach for the synthesis of monodisperse magnetic nanocrystals and M-Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res 2011, 4 (12), 1223-1232.
[210] De Palma, R.; Peeters, S.; Van Bael, M. J.; Van den Rul, H.; Bonroy, K.; Laureyn, W.; Mullens, J.; Borghs, G.; Maes, G., Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chem. Mater. 2007, 19 (7), 1821-1831.
[211] Yang, J.; Lee, J. Y.; Ying, J. Y., Phase transfer and its applications in nanotechnology. Chem. Soc. Rev. 2011, 40 (3), 1672-1696.
[212] Ye, Q.; Zhou, F.; Liu, W. M., Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40 (7), 4244-4258.
[213] Erathodiyil, N.; Ying, J. Y., Functionalization of Inorganic Nanoparticles for Bioimaging Applications. Acc. Chem. Res. 2011, 44 (10), 925-935.
[214] Shultz, M. D.; Reveles, J. U.; Khanna, S. N.; Carpenter, E. E., Reactive nature of dopamine as a surface functionalization agent in iron oxide nanoparticles. J. Am. Chem. Soc. 2007, 129 (9), 2482-2487.
[215] Amstad, E.; Gillich, T.; Bilecka, I.; Textor, M.; Reimhult, E., Ultrastable Iron Oxide Nanoparticle Colloidal Suspensions Using Dispersants with Catechol-Derived Anchor Groups. Nano Lett. 2009, 9 (12), 4042-4048.
[216] Stjerndahl, M.; Andersson, M.; Hall, H. E.; Pajerowski, D. M.; Meisel, M. W.; Duran, R. S., Superparamagnetic Fe3O4/SiO2 nanocomposites: Enabling the tuning of both the iron oxide load and the size of the nanoparticles. Langmuir 2008, 24 (7), 3532-3536.
[217] Sun, C.; Lee, J. S. H.; Zhang, M. Q., Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliver. Rev. 2008, 60 (11), 1252-1265.
[218] Wang, C.; Irudayaraj, J., Gold Nanorod Probes for the Detection of Multiple Pathogens. Small 2008, 4 (12), 2204-2208.
[219] Chung, H. J.; Lee, H.; Bae, K. H.; Lee, Y.; Park, J.; Cho, S. W.; Hwang, J. Y.; Park, H.; Langer, R.; Anderson, D.; Park, T. G., Facile Synthetic Route for Surface-Functionalized Magnetic Nanoparticles: Cell Labeling and Magnetic Resonance Imaging Studies. Acs Nano 2011, 5 (6), 4329-4336.
[220] Na, H. B.; Song, I. C.; Hyeon, T., Inorganic Nanoparticles for MRI Contrast Agents. Adv. Mater. 2009, 21 (21), 2133-2148.
[221] Jun, Y. W.; Huh, Y. M.; Choi, J. S.; Lee, J. H.; Song, H. T.; Kim, S.; Yoon, S.; Kim, K. S.; Shin, J. S.; Suh, J. S.; Cheon, J., Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 2005, 127 (16), 5732-5733.
[222] De, M.; Chou, S. S.; Joshi, H. M.; Dravid, V. P., Hybrid magnetic nanostructures (MNS) for magnetic resonance imaging applications. Adv. Drug Deliver. Rev. 2011, 63 (14-15), 1282-1299.
[223] Vestergaard, M.; Kerman, K.; Kim, D. K.; Hiep, H. M.; Tamiya, E., Detection of Alzheimer's tau protein using localised surface plasmon resonance-based immunochip. Talanta 2008, 74 (4), 1038-1042.
[224] Shaw, L. M.; Korecka, M.; Clark, C. M.; Lee, V. M. Y.; Trojanowski, J. Q., Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat. Rev. Drug Discovery 2007, 6 (4), 295-303.
[225] Hirsch, L. R.; Jackson, J. B.; Lee, A.; Halas, N. J.; West, J., A whole blood immunoassay using gold nanoshells. Anal. Chem.2003, 75 (10), 2377-2381.