研究生: |
陳鑫錨 Chen, Hsin-Mao |
---|---|
論文名稱: |
以流動觸媒法於直立管爐中製作單壁奈米碳管之最佳化分析及機制探討 |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 流動觸媒法 、單壁奈米碳管 、最佳化分析 、長條狀奈米碳管束 |
外文關鍵詞: | floating catalyst method, single-walled carbon nanotube, optimization, long carbon nanotube strand |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗在一直立熱壁式管爐中以流動觸媒法成長單壁奈米碳管絨球,依田口法L18直交表設計規劃實驗,取拉曼光譜之ID/IG比值做為單壁奈米碳管的品質因素,最後得到了一組最佳化參數;並由變異數分析得知於本製程中,爐管溫度對碳管品質的貢獻率最大,其次為催化劑腔體溫度,然而爐管內壓力的變化則對碳管的品質影響不大。以最佳化參數組合為條件,經驗證實驗成長之單壁奈米碳管,其ID/IG比值為0.02,與預測的最佳化結果十分接近。
接著利用此最佳化參數成長長條狀奈米碳管束,藉由數位相機觀察長條狀奈米碳管束的形成過程並加以記錄,以提出可能的成長模型。所成長之長條狀奈米碳管束其長度長於30 cm,寬度約為0.8 cm﹔由FE-SEM影像及Raman光譜可知其主要是由許多單壁奈米碳管束準直排列而形成。
In this work, we studied the optimization of the growth parameters for synthesizing high quality fluffy single-walled carbon nanotubes in a vertically hot-walled furnace using the floating catalyst method. Taguchi analytical method was used to set the processing parameters by L18 orthogonal array. The ID/IG ratios of the Raman spectrum was selected as the quality index of the as-synthesized SWCNTs, and the optimum condition of the seven parameters could be determined. Furthermore, the quantitated contribution of the processing parameters could be obtained by performing the analysis of variance (ANOVA). Although almost all the seven parameters affect the growth of SWCNTs, the reaction temperature and the sublimation temperature of ferrocene influence the quality most obviously. The furnace pressure seems to be of minor importance to the quality compared with the other factors. The SWCNT fluff synthesized using the optimized parameters achieved superior quality (the ID/IG ratio was 0.02), which was similar to the predicted results using the Taguchi method.
Moreover, we produced CNT long strand using the optimized parameters. In-situ observation was recorded with a digital camera to find a growth mechanism of the CNT long strand. The CNT long strand was longer than 30 cm with about 0.8 cm in width. FE-SEM and Raman spectrum revealed that it was mainly composed of single-walled CNT bundles with well alignment.
1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, “C60: Buckminsterfullerence”, Nature, 318, pp162~163, (1985)
2. S. Iijima,“Helical microtubules of graphitic carbon”, Nature, 354, pp56~58, (1991)
3. Rice University: R.E. Smalley’s Group Home Page Image Gallery (http://cohesion.rice.edu/naturalsciences/smalley/emplibrary/allotropes.jpg)
4. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, “Science of Fullerenes & Carbon Nanotubes”, San Diego: Academic Press, (1996)
5. M.S. Dresselhaus, G. Dresselhaus, R. Saito, “Physics of carbon nanotubes”, Carbon, 33, pp883~891, (1995)
6. N. Hanada, S. Sawada, A. Oshiyama, “New One-dimensional conductor microtubles”, Physical Review Letters, 68, pp1579~1581, (1992)
7. J. Mintmire, B. Dunlap, C. White, “Are Fullerene Tubles Metallic? ”, Physical Review Letters, 68, pp631~634, (1992)
8. R. Saito, M. Fujita, G. Dresselhaus, “Physical Properties of Carbon Nanotubes”, Imperial College, (1998)
9. B. Ranadeep, M. Bruce, A. Brett, “Parametric analysis of chirality families and diameter distributions in single-wall carbon nanotube production by the floating catalyst method”, Carbon, 46, pp907~922, (2008)
10. Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, pp169~182, (2000)
11. S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, pp603~605, (1993)
12. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, 243, pp49~54, (1995)
13. W.K. Master, E. Munoz, M.T. Martinez, A.M. Benito, G.F. de la Fuente, “Study of parameters important for the growth of single wall carbon nanotubes”, Optical Materials, 17, pp331~334, (2001)
14. M. Yudasaka, T. Ichihashi, T. Komatsu, S. Iijima, “Single-wall carbon nanotubes formed by a single laser-beam pulse”, Chemical Physics Letters, 299, pp91~96, (1999)
15. A.C. Dillon, P.A. Parilla, J.L. Alleman, J.D. Perkins, M.J. Heben, “Controlling single-wall nanotube diameters with variation in laser pulse power”, Chemical Physics Letters, 316, pp13~18, (2000)
16. H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, M.S. Dresselhaus, “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons”, Applied Physics Letters, 72, pp3282~3284, (1998)
17. C. Bower, W. Zhu, S.H. Jin and O. Zhou, “Plasma-induced alignment of carbon nanotubes”, Applied Physics Letters, 77, pp830~832, (2000)
18. M. Okai, T. Muneyoshi, T. Yaguchi, S. Sasaki, “Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition”, Applied Physics Letters, 77, pp3468~3470, (2000)
19. Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio, “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition”, Applied Physics Letters, 73, pp3845~3847, (1998)
20. G. Taguchi (Yuin Wu, technical editor for the English edition) , “Taguchi Methods / Design of Experiments”, Dearborn MI / ASI Press, Tokyo
21. H.J. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide”, Chemical Physics Letters, 260, pp471~475, (1996)
22. J. Kong, A.M. Cassell, H.J. Dai, “Chemical vapor deposition of methane for single-walled carbon nanotubes”, Chemical Physics Letters, 292, pp567~574, (1998)
23. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, “Catalytic growth of single-wall carbon nanotubes from metal particles”, Chemical Physics Letters, 296, pp195~202, (1998)
24. R. Sen, A. Govindaraj, C.N.R. Rao, “Carbon nanotubes by the metallocene route”, Chemical Physics Letters, 267, pp276~280, (1997)
25. H.M. Cheng, F. Li, X. Sun, S.D.M. Brown, M.A. Pimenta, A. Marucci, G. Dresselhaus, M.S. Dresselhaus, “Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons”, Chemical Physics Letters, 289, pp602~610, (1998)
26. L.J. Ci, J.Q. Wei, B.Q. Wei, J. Liang, C. Xu, D.H. Wu, “Carbon nanofibers and single-walled carbon nanotubes prepared by the floating catalyst method”, Carbon, 39, pp329~335, (2001)
27. G.G. Tibbetts, C.A. Bernardo, D.W. Gorkiewicz, R.L. Alig, “Role of sulfur in the production of carbon fibers in the vapor phase”, Carbon, 32, pp569~576, (1994)
28. S.S. Xie, L. Song, L.J. Ci, Z.P. Zhou, X.Y. Dou, W.Y. Zhou, G. Wang, L.F. Sun, “Controllable preparation and properties of single-/double-walled carbon nanotubes”, Science and Technology of advanced materials, 6, pp725~735, (2005)
29. L.J. Ci, S.S. Xie, D.S. Tang, X.Q. Yan, Y.B. Li, Z.Q. Liu, X.O. Zou, W.Y. Zhou, G. Wang, “Controllable growth of single wall carbon nanotubes by pyrolizing acetylene on the floating iron catalysts”, Chemical Physics Letters, 349, pp191~195, (2001)
30. S. Bandow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, P.C. Eklund, “Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes”, Physical Review Letters, 80, pp3779~3782, (1998)
31. J.S. Qiu, Y.L. An, Z.B. Zhao, Y.F. Li, Y. Zhou, “Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method”, Fuel Processing Technology, 85, pp913, (2004)
32. M. Endo, H. Muramatsu, T. Hayashi, Y.A. Kim, M. Terrones, M.S. Dresselhaus, “Buckypaper from coaxial nanotubes”, Nature, 433, pp476, (2005)
33. S.C. Lyu, B.C. Liu, S.H. Lee, C.Y. Park, H.K. Kang, C.W. Yang, C.J. Lee, “Large-scale synthesis of high-quality double-walled carbon nanotubes by catalytic decomposition of n-Hexane”, Journal of Physical Chemistry B, 108, pp2192, (2004)
34. Z.P. Zhou, L.J. Ci, X.H. Chen, D.S. Tang, X.Q. Yan, D.F. Liu, Y.X. Liang, H.J. Yuan, W.Y. Zhou, G. Wang, S.S. Xie, “Controllable growth of double wall carbon nanotubes in a floating catalytic system”, Carbon, 41, pp337, (2003)
35. S.C. Lyu, B.C. Liu, C.J. Lee, “High-Quality Double-Walled Carbon Nanotubes Produced by Catalytic Decomposition of Benzene”, Chemistry of Materials, 15, pp3951, (2003)
36. B.C. Liu, S.C. Lyu, T.J. Lee, S.K. Choi, S.J. Eum, C.W. Yang, C.Y. Park, C.J. Lee, “Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane”, Chemical Physics Letters, 373, pp475, (2003)
37. Y. Kobayashi, H. Nakashima, D. Takagi, Y. Homma, “CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst”, Thin Solid Films, 464-465, pp286, (2004)
38. S. Sun, H. Zeng, “Size-Controlled Synthesis of Magnetite Nanoparticles”, Journal of the American Chemical Society, 124, pp8204, (2002)
39. M. Endo, H.W. Kroto, “Formation of carbon nanofibers”, Journal of Physical Chemistry, 96, pp6941, (1992)
40. A. Gorbunov, O. Jost, W. Pompe, “Solid-liquid-solid growth mechanism of single-wall carbon nanotubes”, Carbon, 40, pp113, (2002)
41. R.T.K. Baker, J.J. Chludzinski, “Filamentous carbon growth on nickel-iron surfaces-the effect of various oxide additives”, Journal of Catalysis, 64, pp464, (1980)
42. A. Oberlin, M. Endo, T. Koyama, “Filamentous growth of carbon through benzene decomposition”, Journal of Crystal Growth, 32, pp335~349, (1976)
43. T. Baird, J.R. Fryer, B. Giant, “Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 degreesc”, Carbon, 12, pp591, (1974)
44. R.T.K. Baker, P.S. Harries, M. Dekker, “Chemistry and Physics of Carbon”, New York 83, (1978)
45. Y.J. Yoon, H.K. Baik, “Catalytic growth mechanism of carbon nanofibers through chemical vapor deposition”, Diamond and related materials, 10, pp1214~1217, (2001)
46. 李輝煌,「田口方法/品質設計的原理與實務」(Taguchi method/principles and practices of quality design),高立圖書有限公司,中華民國八十九年
47. H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, “Direct Synthesis of Long Single-Walled Carbon Nanotube Strands”, Science, 296, pp884~886, (2002)
48. Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W. Y. Zhou, W. Z. Li, L. X. Qian, “Very long carbon nanotubes”, Nature, 394, pp631~632, (1998)
49. C. Liu, H.M. Cheng, H.T. Cong, F.Li, G. Su, B.L. Zhou, and M.S. Dresselhaus, “Synthesis of Macroscopically Long Ropes of Well-Aligned Single-Walled Carbon Nanotubes”, Advanced Materials, 12, pp1190~1192, (2000)
50. Y.L. Li, I.A. Kinloch, A.H. Windle, “Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis”, Science, 304, pp276~278, (2004)
51. 蘇朝墩,「品質工程」,中華民國品質學會,中華民國九十一年
52. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, R. Saito, “Raman spectroscopy on isolated single wall carbon nanotubes”, Carbon, 40, pp2043~2061, (2002)
53. 丁志華、戴寶通,「田口實驗計畫法簡介(1)(2) 」,毫微米通訊,第八卷,第四期,中華民國九十年
54. 梁家榮,「原位即時觀察單壁奈米碳管薄膜成長過程之研究」,國立清華大學材料科學工程研究所碩士論文,中華民國九十七年七月
55. Q.F. Liu, W.C. Ren, Z.G. Chen, B.L. Liu, B. Yu, F. Li, H.T. Cong, H.M. Cheng, “Direct synthesis of carbon nanotubes decorated with size-controllable Fe nanoparticles encapsulated by graphitic layers”, Carbon, 46, pp1417~1423, (2008)
56. Q.F. Liu, Z.G. Chen, B.L., W.C. Ren, F. Li, H.T. Cong, H.M. Cheng, “Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures”, Carbon, 46, pp1892~1902, (2008)