簡易檢索 / 詳目顯示

研究生: 周永晟
Jou, Yung-Cheng
論文名稱: 具有載子注入平衡共主體結構之黃光有機發光二極體
High Efficiency Yellow Organic Light-Emitting Diodes with a Balanced Carrier Injection Co-host Structure
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員: 吳茂昆
Wu, Maw-Kuen
薛景中
Shyue, Jing-Jong
陳建添
Chen, Chieh-Tien
岑尚仁
Chen, Sun-Zen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 73
中文關鍵詞: 黃光有機發光二極體高效率共主體載子注入平衡
外文關鍵詞: yellow OLED, high efficiency, cohost, balanced carrier injection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用一無電子注入能障之主體材料,搭配利於電洞注入之共主體 tris(2-phenylpyridine)iridium(III) [Ir(ppy)3],並使用高發光效率之磷光黃光染料 iridium(III)bis(4-phenylthieno[3,2-c]pyridinato-N,C 2')acetylacetonate (PO-01),有效使元件於高亮度下仍能保持高效率,並製備一突破世界紀錄之高效率黃光磷光有機發光二極體。元件效率表現,在亮度為 100 cd/m2 下,能量效率為79 lm/W,電流效率為77 cd/A,外部量子效率為25%,在亮度為1,000 cd/m2下,則分別為59 lm/W,71 cd/A,以及23%。元件高效率的原因為:(1)使用薄發光層以及無電子注入能障主體,有效降低元件驅動電壓而達高效率;(2)使用共主體結構,使載子更易注入至發光層;於低電壓下,激子主要於共主體上產生,高電壓下則主要於主體上產生,使元件不論在低或高電壓下,皆能夠有良好的主客體能量傳遞,並於高亮度下仍能維持高效率。另外,選用不同性質之主體材料 (具電洞傳輸性或同時具電子電洞傳輸性),搭配此共主體材料,於高亮度下,元件效率皆能獲得改善。


    We demonstrate herein the design and fabrication of a highly efficient yellow organic light-emitting diode (OLED) with a balanced carrier injection device architecture having a zero electron-injection-barrier host blended with a hole-injection aiding co-host. The resultant yellow OLED showed, at 1,000 cd m-2 for example, an efficacy of 59 lm W-1, current efficiency of 71 cd A-1 and external quantum efficiency (EQE) of 23%, while 42 lm W-1, 47 cd A-1 and 15% EQE without co-host. The co-host effect that resulted in a much balanced carrier injection was also valid for other yellow OLED devices and their efficiency improvement was also very marked. With the use of a micro-lens, the device efficiency is further improved to 79 lm W-1, 96 cd A-1 and 30% EQE.

    目錄 摘要 I 英文摘要 II 誌謝 I 目錄 III 圖目錄 VI 表目錄 VIII 壹、 緒論 1 貳、 文獻回顧 4 2-1 有機發光二極體的歷史發展 4 2-2 有機發光二極體的發光原理 15 2-2-1 有機電激發光原理 15 2-2-2 載子再結合機制 21 2-2-3能量傳遞機制 23 2-2-4元件效率 25 2-3 有機發光二極體材料發展 27 2-3-1、陽極材料 27 2-3-2、電洞注入材料 27 2-3-3、電洞傳輸材料 27 2-3-4、發光材料 29 2-3-5、電子傳輸材料 29 2-3-6、電子注入材料 30 2-3-7、陰極材料 31 2-4黃光有機發光二極體之發展 32 參、實驗方法 36 3-1、材料 36 3-1-1 材料之全名、簡稱及來源一覽 36 3-1-2 本研究所使用有機材料之化學結構式 39 3-1-3 材料性質之量測 41 3-2 元件設計及製備 43 3-2-1 元件電路設計 43 3-2-2 ITO基材前處理 44 3-2-3 旋轉塗佈電洞傳輸層 45 3-2-4 蒸鍍裝置 45 3-2-5 蒸鍍電子阻擋層 46 3-2-6 發光層蒸鍍源之製備與蒸鍍 47 3-2-7 電子傳輸層之製備 47 3-2-8 無機層之製備 48 3-3 元件之量測 49 元件電流、電壓與亮度特性之量測 49 肆、 結果與討論 51 4-1、主體效應 51 4-1-1 元件能階結構與元件名稱對照表 51 4-1-2 濃度對效率的影響 53 4-1-3 主體對效率的影響 54 4-2、共主體效應 56 4-2-1 元件能階結構與元件名稱對照表 56 4-2-2 共主體摻雜濃度的影響 58 4-2-3有無共主體對不同主體黃光元件的影響 61 4-3 所有元件的效率表現 64 伍、結論 65 陸、參考文獻 66 附錄、個人著作目錄 73 (A) 期刊論文 73 (B) 研討會論文 73 圖目錄 圖一、柯達公司於1987年首創異質接面之雙層OLED元件結構圖28 7 圖二、CALVENDISH實驗室,所發表(A)溶液塗佈方式之示意圖及(B)單層PLED元件結構圖32 9 圖三、KIDO教授團隊,在電洞傳輸層及電子傳輸層之間,加入一電洞阻擋層之OLED元件結構示意圖35 10 圖四、SHIROTA等人,使用雙層電洞傳輸層之OLED元件結構圖37 11 圖五、LEO教授團隊,發表之P-I-N結構示意圖41 12 圖六、溶劑預混法之示意圖64 13 圖七、OLED元件結構之示意圖 16 圖八、OLED元件的發光機制三步驟48 16 圖九、JABLONSKI能階圖48 22 圖十、FÖRSTER ENERGY TRNASFER54和DEXTER ENERGY TRANSFER55之示意圖 24 圖十一、本實驗所使用微透鏡 (MICROLENS)的SEM圖86 37 圖十二、本研究所使用有機材料之化學結構式87 41 圖十三、OLED元件之電路設計圖95 43 圖十四、本研究所使用之真空蒸鍍系統示意圖89 46 圖十五、OLED元件之電流-電壓-亮度(I-V-L)及CIE色座標量測示意圖90 49 圖十六、單層發光層黃光磷光OLED元件結構 52 圖十七、濃度效應對元件效率(元件I~III)的影響 53 圖十八、主體效應對元件效率的影響(A) 亮度及電流效率對電壓關係圖(B)能量效率對電壓關係圖 55 圖十九、摻雜共主體IR(PPY)3的能階結構圖 57 圖二十、共主體摻雜濃度對以TPBI為主體的元件之電激發光光譜關係圖 60 圖二十一、有無摻雜共主體對元件電流密度的影響 60 圖二十二、有無摻雜共主體對元件表現的影響 62 圖二十三、在皆有摻雜共主體下,CBP為主體的元件有些微藍位移 63 表目錄 表一、為有機發光二極體發展史的重要時間點及其團隊重大發現 4 表二、各光色波長相對應之HOMO-LUMO能階差及CIE座標49 17 表三、為黃光有機發光二極體發展史的時間點及其團隊發現 32 表四、本研究所使用之材料的主要功能、系統命名、俗稱及來源 38 表五、單層黃光磷光發光層的元件名稱與黃光摻雜濃度對照表 52 表六、元件名稱與共主體和黃光染料摻雜濃度對照表 57 表七、所有元件的效率表現 64

    陸、參考文獻
    1 C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51 (12), 913-915
    (1987).
    2 J. Kido, M. Kimura and K. Nagai, Science 267 (5202), 1332-1334
    (1995).
    3 S. R. Forrest, Nature 428 (6986), 911-918 (2004).
    4 B. W. D'Andrade and S. R. Forrest, Advanced Materials 16 (18),
    1585-1595 (2004).
    5 F. So, J. Kido and P. Burrows, Mrs Bulletin 33 (7), 663-669 (2008).
    6 S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B.
    Lussem and K. Leo, Nature 459 (7244), 234-U116 (2009).
    7 J. H. Jou, C. C. Chen, Y. C. Chung, M. T. Hsu, C. H. Wu, S. M. Shen,
    M. H. Wu, W. B. Wang, Y. C. Tsai, C. P. Wang, J. J. Shyue, Adv.
    Funct. Mater. 18, 121, (2008)
    8 J. H. Jou, W. B. Wang, M. F. Hsu, J. J. Shyue, C. H. Chiu, I. M. Lai,
    S. Z. Chen, P. H. Wu, C. C. Chen, C. P. Liu, S. M. Shen, Acs Nano 4,
    4054, (2010)
    9 J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue,
    C. C. Chiang, Org. Electron. 9, 291, (2008)
    10 J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li,
    R.S. Liu, Org. Electron. 8, 29, (2007)
    11 J. H. Jou, M. H. Wu, C. P. Wang, Y. S. Chiu, P. H. Chiang, H. C. Hu,
    R. Y. Wang, Org. Electron. 8, 735, (2007)
    12 D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, J. Kido, Chem. Lett. 36,
    262, (2007)
    13 W. Y. Hung, Z. W. Chen, H. W. You, F. C. Fan, H. F. Chen, K. T.
    Wong, Org. Electron. 12, 575, (2011)
    14 J. H. Jou, P. H. Wu, C. H. Lin, M. H. Wu, Y. C. Chou, H. C. Wang, S.
    M. Shen, J. Mater. Chem. 20, 8464, (2010)
    15 H. Sasabe, J. Takamatsu, T. Motoyama, S. Watanabe, G. Wagenblast,
    N. Langer, O. Molt, E. Fuchs, C. Lennartz, J. Kido, Adv. Mater. 22,
    5003, (2010)
    16 J. H. Jou, Y. S. Wang, C. H. Lin, S. M. Shen, P. C. Chen, M. C. Tang,
    Y. Wei, F. Y. Tsai, C. T. Chen, J. Mater. Chem. 21, 12613 ,(2011)
    17 K. S. Yook, S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh, S. K.
    Kang, T. W. Lee, Adv. Funct. Mater. 2010, 20, 1797.
    18 J. Blochwitz, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett. 73, 729,
    (1998)
    19 S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B.
    Lussem, K. Leo, Nature 459, 234, (2009)
    20 P. Wellmann, M. Hofmann, O. Zeika, A. Werner, J. Birnstock, R.
    Meerheim, G. F. He, K. Walzer, M. Pfeiffer, K. Leo, J. Soc. Inf.
    Display 13, 393, (2005)
    21 V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov and S. R. Forrest, Physical Review B 58 (7), 3730-3740 (1998).
    22 Bernanose, M. Conet, P. Vouauzx, J. Chem. Phys. 50, 64 (1953)
    23 P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 38, 2042 (1963)
    24 W. Helfrich and Schneide.Wg, Physical Review Letters, 14, 229 (1965)
    25 W. Helfrich and Schneide.Wg, J. Chem. Phys., 44, 2902 (1966)
    26 P. S. Vincett, W. A. Barlow, R. A. Hann and G. G. Roberts, Thin Solid Films, 94, 171 (1982)
    27 R. H. Partridge, Polymer, 24, 733 (1983)
    28 C. W. Tang and S. A. Vanslyke, Applied Physics Letters, 51, 913 (1987)
    29 C. Adachi, M. A. Baldo, M. E. Thompson and S. R. Forrest, J. Appl. Phys., 90, 5048 (2001)
    30 S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Pat. 1988, No. 4,720,432.
    31 C. W. Tang, S. A. Vanslyke and C. H. Chen, Journal of Applied Physics, 65, 3610 (1989)
    32 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 347, 539 (1990)
    33 R. H. Friend, J. H. Burroughes, and D. D. Bradley, US. Pat. 1993, No. 5,247,190.
    34 J. Kido, M. Kohda, K. Okuyama and K. Nagai, Appl. Phys. Lett., 61, 761 (1992)
    35 J. Kido, K. Hongawa, K. Okuyama and K. Nagai, Applied Physics Letters, 64, 815 (1994)
    36 J. Kido, M. Kimura and K. Nagai, Science, 267, 1332 (1995)
    37 Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami and K. Imai, Appl. Phys. Lett., 65, 807 (1994)
    38 S. Tokito, K. Noda and Y. Taga, Journal of Physics D-Applied Physics, 29, 2750 (1996)
    39 J. M. Shi and C. W. Tang, Applied Physics Letters, 70, 1665 (1997)
    40 M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature, 395, 151 (1998)
    41 J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo and S. Y. Liu, Applied Physics Letters, 80, 139 (2002)
    42 Y. Shao and Y. Yang, Applied Physics Letters, 86 (2005)
    43 J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang and C. Hu, Applied Physics Letters, 88 (2006) Y. Shao and Y. Yang, Applied Physics Letters, 86 (2005)
    44 Y. Sun and S. R. Forrest, Nature Photonics, 2, 483 (2008)Y. Sun and S. R. Forrest, Nature Photonics, 2, 483 (2008)
    45 S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, Nature, 459, 234 (2009)
    46 J. B. Wu, M. Agrawal, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen and P. Peumans, Acs Nano, 4, 43 (2010)
    47 F. So, J. Kido and P. Burrows, Mrs Bulletin, 33, 663 (2008)
    48 陳金鑫, 陳錦地, 吳忠織, 白光OLED照明 (2009)
    49 Commission Internationale de L’eclairage. (CIE), Colorimetry 1986, Publication Report No. 15.2
    50 W. D. Gill, Journal of Applied Physics, 43, 5033 (1972)
    51 U. Wolf, V. I. Arkhipov and H. Bassler, Physical Review B, 59, 7507 (1999)
    52 M. A. Lampert, P. Mark, Current Injection in Solids 1970, New York, Academic Press.
    53 Murgatro.Pn, J. Phys. D-Appl. Phys., 3, 151 (1970)
    54 T. Forster, Annalen Der Physik, 2, 55 (1948)
    55 D. L. Dexter, J. Chem. Phys., 21, 836 (1953)
    56 V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov and S. R. Forrest, Physical Review B, 58, 3730 (1998)
    57 M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong and M. Wang, J. Appl. Phys. 86 (3), 1688 (1999).
    58 C. C. Wu, C. I. Wu, J. C. Sturm and A. Kahn, Appl. Phys. Lett. 70 (11), 1348 (1997).
    59 S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett. 69 (15), 2160 (1996).
    60 Y. Cao, G. Yu, C. Zhang, R. Menon and A. J. Heeger, Synth. Met. 87 (2), 171 (1997).
    61 S. H. Eom, Y. Zheng, E. Wrzesniewski, J. Lee, N. Chopra, F. So and J. G. Xue, Organic Electronics 10 (4), 686 (2009).
    62 J. Kido, M. Kohda, K. Okuyama and K. Nagai, Appl. Phys. Lett. 61 (7), 761 (1992).
    63 D. D. Zhang, J. Feng, H. Wang, Y. Bai, Q. D. Chen, S. Y. Liu and H. B. Sun, Appl. Phys. Lett. 95 (26), 263303 (2009).
    64 S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 8.
    65 S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, 1997, Chap 9.
    66 J. Yang, J. Shen, J. Appl. Phys. 1998, 84, 2105.
    67 Z. Liu, J. Pinto, J. Soaves, E. Pereira, Synth. Metals 2001, 122, 177.
    68 C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51 (12), 913 (1987).
    69 C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 55 (15), 1489 (1989).
    70 C. H. Chen, J. Shi and C. W. Tang, Patent No. EP825804-A; US5645948-A; EP825804-A2; JP10092578-A; EP825804-B1; DE69710135-E; JP3992794-B2 (EP825804-A US5645948-A 08 Jul 1997 H05B-033/20 199733)
    71 J. Kido, M. Kohda, K. Okuyama and K. Nagai, Appl. Phys. Lett. 61 (7), 761 (1992).
    72 G. E. Jabbour, B. Kippelen, N. R. Armstrong and N. Peyghambarian, Appl. Phys. Lett. 73 (9), 1185 (1998).
    73 C. W. Tang, S. A. Vanslyke and C. H. Chen, J. Appl. Phys. 65 (9), 3610 (1989).
    74 E. I. Haskal, A. Curioni, P. F. Seidler and W. Andreoni, Appl. Phys. Lett. 71 (9), 1151 (1997).
    75 Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi and K. Shibata, Appl. Phys. Lett., 71, 3338 (1997)
    76 X. Q. Lin, B. J. Chen, X. H. Zhang, C. S. Lee, H. L. Kwong and S. T. Lee, Chem. Mater., 13, 456 (2001)
    77 E. A. Meulenkamp, R. V. Aar, J. J. A. M. Bastiaansen, A. J. M. V. D. Biggelaar, H. Börner, K. Brunner, M. Büchel, A. V. Dijken, N. M. M. Kiggen, M. Kilitziraki, M. M. D. Kok, B.M.W. Langeveld, M. P. H. Ligter, S. I. E. Vulto, P. V. D. Weijer and S. H. P. M. D. Winter, Proc. SPIE–Int. Organic Optoelectronics and Photonics, 5464, 90 (2004).
    78 P. P. Sun, C. X. Li, Y. Pan and Y. Tao, Synth. Met., 156, 525 (2006)
    79 C. T. Chen, Y. Wei, J. S. Lin, M. Moturu, W. S. Chao, Y. T. Tao and C. H. Chien, J. Am. Chem. Soc., 128, 10992 (2006)
    80 Y. Tao, Q. Wang, C. Yang, K. Zhang, Q. Wang, T. Zou, J. Qin and D. Ma, J. Mater. Chem., 18, 4091 (2008).
    81 Y. M. Cheng, G. H. Lee, P. T. Chou, L. S. Chen, Y. Chi, C. H. Yang, Y. H. Song, S. Y. Chang, P. I. Shih and C. F. Shu, Adv. Funct. Mater., 18, 183 (2008)
    82 G. P. Ge, J. He, H. Q. Guo, F. Z. Wang and D. C. Zou, J. Organomet. Chem., 694, 3050 (2009)
    83 F. Lindla, M. Boesing, C. Zimmermann, F. Jessen, P. van Gemmern, D. Bertram, D. Keiper, N. Meyer, M. Heuken, H. Kalisch and R. H. Jansen, Appl. Phys. Lett., 95 (2009)
    84 M. T. Lee, M. T. Chu, J. S. Lin and M. R. Tseng, J. phys. D: Appl. Phys., 43, 442003 (2010)
    85 L. Yan, N.J. Watkins, S. Zorba, Y. Gao, C.W. Tang, Appl.Phys. Lett. 81, 2752, (2002).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE