研究生: |
楊泊泓 Yang, Po-Hung |
---|---|
論文名稱: |
CMOS 8×8 電化學多巴胺感測器與電刺激陣列 CMOS 8×8 Electrochemical Dopamine Sensor Array with Electrical Stimulation |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 電化學感測陣列 、類比電路 、多巴胺 |
外文關鍵詞: | electrochemical, sensor array, dopamine, analog circuit |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來多巴胺量的多寡對於腦內疾病有著嚴重的影響,近年來因缺少多巴胺而產生的疾病有帕金森氏症與阿茲海默症,因此建立一個可即時監控腦內多巴胺的電子平台是我們目標。這篇論文敘述了如何大範圍感測多巴胺傳導物質與範圍性刺激細胞,使用電化學感測機制與刺激陣列晶片,並且使用微機電後製程技術整合指叉式金電極於晶片上,利用lift-off方式製作有著5 μm的間隔的電極。CMOS感測電路是電流轉電壓型態,有著1 pF的充電電容與定電壓目的的主動電流源放大器,並且有著大動態範圍。根據先前實驗結果氧化與還原電位分別為-0.2 V與+0.6 V,還原電流相對於多巴胺濃度的靈敏度約為0.25 nA⁄μM。整體功率消耗約為14.5μW。
[1] S. D. Iversen and L. L. Iversen, "Dopamine: 50 years in perspective," Trends in Neurosciences, vol. 30, pp. 188-193, May 2007.
[2] G. K. Fedder, et al., "Technologies for cofabricating MEMS and electronics," Proceedings of the IEEE, vol. 96, pp. 306-322, Feb 2008.
[3] O. Brand, "Microsensor integration into systems-on-chip," Proceedings of the IEEE, vol. 94, pp. 1160-1176, Jun 2006.
[4] J. H. Smith, et al., "Embedded micromechanical devices for the monolithic integration of MEMS with CMOS," International Electron Devices Meeting, 1995 - IEDM Technical Digest, pp. 609-612, 1995.
[5] C. J. Watson, et al., "In vivo measurements of neurotransmitters by microdialysis sampling," Analytical Chemistry, vol. 78, pp. 1391-1399, Mar 2006.
[6] R. F. B. Turner, et al., "A CMOS Potentiostat For Amperometric Chemical Sensors," IEEE Journal of Solid-State Circuits, vol. 22, pp. 473-478, Jun 1987.
[7] A. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd ed. New York: Wiley, 2001.
[8] M. Schienle, et al., "A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion," IEEE Journal of Solid-State Circuits, vol. 39, pp. 2438-2445, Dec 2004.
[9] H. S. Narula and J. G. Harris, "A time-based VLSI potentiostat for ion current measurements," IEEE Sensors Journal, vol. 6, pp. 239-247, Apr 2006.
[10] S. Ayers, et al., "Design of a CMOS potentiostat circuit for electrochemical detector arrays," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 54, pp. 736-744, Apr 2007.
[11] R. Genov, et al., "16-Channel integrated potentiostat for distributed neurochemical sensing," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 53, pp. 2371-2376, Nov 2006.
[12] M. M. Ahmadi and G. A. Jullien, "Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 56, pp. 1339-1348, Jul 2009.
[13] K. Murari, et al., "Integrated potentiostat for neurotransmitter sensing," IEEE Engineering in Medicine and Biology Magazine, vol. 24, pp. 23-29, Nov-Dec 2005.
[14] M. Stanacevic, et al., "VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing," IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 63-72, Mar 2007.
[15] A. Gore, et al., "A multichannel femtoampere-sensitivity potentiostat array for biosensing applications," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 53, pp. 2357-2363, Nov 2006.
[16] M. Roham, et al., "Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit," IEEE Transactions on Biomedical Engineering, vol. 55, pp. 2628-2634, Nov 2008.
[17] M. Roham, et al., "A Wireless IC for Wide-Range Neurochemical Monitoring Using Amperometry and Fast-Scan Cyclic Voltammetry," IEEE Transactions on Biomedical Circuits and Systems, vol. 2, pp. 3-9, Mar 2008.
[18] M. Roham, et al., "A Wireless IC for Time-Share Chemical and Electrical Neural Recording," IEEE Journal of Solid-State Circuits, vol. 44, pp. 3645-3658, Dec 2009.
[19] X. S. Zhu and C. H. Ahn, "On-chip electrochemical analysis system using nanoelectrodes and bioelectronic CMOS chip," IEEE Sensors Journal, vol. 6, pp. 1280-1286, Oct 2006.
[20] S. Ayers, et al., "Post-CMOS Fabrication of Working Electrodes for On-Chip Recordings of Transmitter Release," IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 86-92, Apr 2010.
[21] F. L. Chan, et al., "An electrochemical dopamine sensor with a CMOS detection circuit," Journal of Micromechanics and Microengineering, vol. 18, Jul 2008.
[22] W. S. Wang, et al., "Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor," Sensors, vol. 10, pp. 1782-1797, Mar 2010.
[23] 詹豐林 “使用電化學法配合互補式金屬氧化半導體電路之多巴胺定量感測器”, 國立清華大學電子研究所, 民97
[24] M. Pohanka and P. Skladai, "Electrochemical biosensors - principles and applications," Journal of Applied Biomedicine, vol. 6, pp. 57-64, 2008.
[25] D. Grieshaber, et al., "Electrochemical biosensors - Sensor principles and architectures," Sensors, vol. 8, pp. 1400-1458, Mar 2008.
[26] L. C. Clark and C. Lyons, "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery," Annals of the New York Academy of Sciences, vol. 102, pp. 29-&, 1963.
[27] D. A. Skoog, et al., Principles of instrumental analysis, 6th ed. Belmont, CA: Thomson Brooks/Cole, 2007.
[28] H. Suzuki, et al., "An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode," Analytica Chimica Acta, vol. 387, pp. 103-112, Apr 16 1999.
[29] S. I. Park, et al., "Application of a new Cl-plasma-treated Ag/AgCl reference electrode to micromachined glucose sensor," IEEE Sensors Journal, vol. 3, pp. 267-273, Jun 2003.
[30] B. J. Polk, et al., "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B-Chemical, vol. 114, pp. 239-247, Mar 30 2006.
[31] http://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg
[32] http://en.wikipedia.org/wiki/File:Synapse_Illustration_unlabeled.svg
[33] J. N. Crawley, Current protocols in neuroscience. New York, N.Y.: J. Wiley, 1999.
[34] K. Aoki, et al., "Quantitative-Analysis of Reversible Diffusion-Controlled Currents of Redox Soluble Species at Interdigitated Array Electrodes under Steady-State Conditions," Journal of Electroanalytical Chemistry, vol. 256, pp. 269-282, Dec 9 1988.
[35] T. V. Shea and A. J. Bard, "Digital-Simulation of Homogeneous Chemical-Reactions Coupled to Heterogeneous Electron-Transfer and Applications at Platinum Mica Platinum Ultramicroband Electrodes," Analytical Chemistry, vol. 59, pp. 2101-2111, Sep 1 1987.
[36] P. R. Gray, Analysis and design of analog integrated circuits, 4th ed. New York: Wiley, 2001.
[37] W. Franks, et al., "Impedance characterization and modeling of electrodes for biomedical applications," IEEE Transactions on Biomedical Engineering, vol. 52, pp. 1295-1302, Jul 2005.
[38] E. T. McAdams, et al., "The Linear and Nonlinear Electrical- Properties of The Electrode-Electrolyte Interface," Biosensors & Bioelectronics, vol. 10, pp. 67-74, 1995.
[39] J. Kao, et al., "Subthreshold leakage modeling and reduction techniques," IEEE/ACM International Conference on Cad-02, Digest of Technical Papers, pp. 141-148, 2002.
[40] J. T. Wu, handout of Data-Conversion Integrated Circuits, Taiwan: NCTU, 2010.
[41] R. J. Baker and Institute of Electrical and Electronics Engineers., CMOS circuit design, layout, and simulation, 2nd ed. New York: IEEE Press, 2005.
[42] F. Heer, et al., "CMOS microelectrode array for the monitoring of electrogenic cells," Biosensors & Bioelectronics, vol. 20, pp. 358-366, Sep 15 2004.
[43] M. M. Mano, Digital design, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2007.
[44] C.-W. Huang and M. S.-C. Lu,” Electrochemical detection of the neurotransmitter Dopamine by nanoimprinted sub-□m microelectrodes and CMOS Circuitry with near 100% Collection Efficiency,” EUROSENSORS XXIV, Linz, Austria, 5-8 Sept., 2010.