研究生: |
徐書敏 Hsu, Shu Min |
---|---|
論文名稱: |
以極速學習機建立電力系統之負載動態模型 Dynamical Load Modeling Developments in Power Systems by Extreme Learning Machine |
指導教授: |
朱家齊
Chu, Chia Chi |
口試委員: |
吳有基
黃培華 林堉仁 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 負載模型 、監錄量測法 、極速學習機 、PSS/E自定義模型 、模型參數識別 |
外文關鍵詞: | Load Models, Measurement-based Method, Extreme Learning Machine, PSS/E User-defined Model, Model Parameter Identification |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電力系統各設備元件模型的精確度,對模擬結果能否如實反映系統實際運轉之行為有著重大的影響。其中又以負載的不確定性及複雜性為最高,故建立正確且適當的負載模型,可提升電力系統穩定度模擬的真實性,加強電網分析的可靠度。一般建構負載模型的方法主要分成兩類:監錄量測法及元件聚集法。本研究以監錄量測法建構負載模型,採用極速學習機進行負載模型的識別與驗證。首先,利用極速學習機對輸入輸出資料間優越的映射能力及通用化表現,以變電所實際量測之監錄記錄檔進行負載功率的估測,此方式期望在不需先得知負載模型之架構的情況下,可僅以監錄設備量測之負載電壓、功率等數據,準確地估測出負載功率的動態響應,模擬結果可顯示極速學習機良好的預測能力。本論文亦使用極速學習機對靜態指數負載模型進行參數識別,為充分驗證此方式之參數識別的準確性,利用PSS/E自定義模型功能預設參數值,產生欲識別之事故案例進行負載模型參數估測。比較極速學習機識別之參數值與原先自定義模型之參數預設值,並將參數估測結果代入指數負載模型進行負載功率的驗證,在IEEE 9匯流排系統及IEEE 39匯流排系統之試驗中,皆可獲得理想的識別結果。最後,在應用至實際監錄量測設備得到之事件紀錄檔,進行靜態指數負載模型的參數識別。
The accuracy of the model of each equipment component impacts whether the power system simulation results can exactly reflect the operating behavior of the actual system, and the complexity and uncertainty of the load models are the highest among the rest. Adequate modeling of loads which can capture essential dynamic behaviors of the power system can indeed improve the factuality of stability simulations and the reliability of electric network analysis. In the literature, two distinct categories of dynamical load modeling approaches which are commonly used: measurement-based and component based method. This thesis will focus on the measurement-based method. The extreme learning machine (ELM) is adopted for identifying and validating of various dynamical load models. The proposed approach will consist of the following two steps. First, by considering the superior capability of mapping the input-output relationship and generalization performance, the load power was predicted by ELM with measured data. Then, it is expected that the dynamic response of the load power can be accurately estimated without using pre-defined physical load models. In this thesis, ELM was also used for parameter identification of static exponential load model. The contingency events for load model parameter identification were generated with PSS/E user-defined model. The predicted dynamical load models were compared with the default values set in the user-defined model. The predicted values were also used for validating the model of load power. Simulation results of both IEEE 9 bus and IEEE 39 bus system have shown satisfactory results.
[1] A. M. Azmy, I. Erlich, and P. Sowa, “Artificial neural network-based dynamic equivalents for distribution systems containing active sources,” IEE Proc.-Gener. Transm. Distrib., Vol. 151, no. 6, pp. 681-688, November 2004.
[2] A. Y. Abdelaziz, M. A. L. Badr, and A. H. Younes, “Dynamic load modeling of an Egyptian primary distribution system using neural networks,” International Journal of Electrical Power and Energy Systems, Vol. 29, pp. 637-649, 2007.
[3] A. Miranian, and K. Rouzbehi, “Nonlinear Power System Load Identification Using Local Model Networks,” IEEE Trans. On Power Systems, Vol. 28, NO. 3, pp. 2872-2881, August 2013.
[4] CIGRE, Modelling and Aggregation of Loads in Flexible Power Networks, WG C4.605, 2013.
[5] EPRI, Measurement-Based Load Modeling, Technical Report 1014402, September 2006.
[6] C.-Y. Chiou, C.-H. Huang, A.-S. Liu, Y.-T. Chen, T.-H. Li, C.-J. Lin, H.-D. Chiang, and J.-L. Yuan, “Development of a Micro-processor-based Transient Data Recording System for Load Behavior Analysis,” IEEE Transactions on Power Systems, vol. 8, no. 1, pp. 16-22, August 1993.
[7] Y. Li, H.-D. Chiang, B.-K. Choi, Y.-T. Chen, D.-H. Huang, and M. G. Lauby, “Representative static load models for transient stability analysis: development and examination,” IET Gener. Transm. Distrib. , vol. 1, no. 3, pp. 422-431, 2007.
[8] Y. Li, H.-D. Chiang, B.-K. Choi, Y.-T. Chen, D.-H. Huang, and M. G. Lauby, “Load models for modeling dynamic behaviors of reactive loads: Evaluation and comparison,” Electrical Power and Energy Systems, pp. 497-503, 2008.
[9] B.-K. Choi, and H.-D. Chiang, “Multiple Solutions and Plateau Phenomenon in Measurement-Based Load Model Development: Issues and Suggestions,” IEEE Trans. on Power Systems, vol. 24, no. 2, pp. 824-831, May 2009.
[10] C.-J. Lin, Y.-T. Chen, C.-Y. Chiou, H.-D. Chiang, and J.-C. Wang, “Dynamic Load Models in Power Systems Using the Measurement Approach,” IEEE Transactions on Power Systems, vol. 8, no. 1, pp. 309-315, February 1993.
[11] J.-C. Wang, H.-D. Chiang, C.-L. Chang, A.-H. Liu, C.-H. Huang, and C.-Y. Huang, “Development of a Frequency-dependent Composite Load Model Using the Measurement Approach,” IEEE Transactions on Power Systems, vol. 9, no. 3, pp. 1546-1556, August 1994.
[12] H.-D. Chiang, J.-C. Wang, C.-T. Huang, Y.-T. Chen, and C.-H. Huang, “Development of a dynamic ZIP-motor load model from on-line field measurements,” Electrical Power & Energy System, vol. 19, no. 7, pp. 459-468, 1997.
[13] B.-K. Choi, H.-D. Chiang, Y. Li, H. Li, Y.-T. Chen, D.-H. Huang, and M. G. Lauby, “Measurement-Based Dynamic Load Models: Derivation, Comparison, and Validation,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1276-1283, August 2006.
[14] R.-M. He, J. Ma, and D. J. Hill, “Composite load modeling via measurement approach,” IEEE Trans. on Power Systems, vol. 21, no. 2, pp. 663-672, May 2006.
[15] D. Han, J. Ma, R.-M. He, and Z.-Y. Dong, “A Real Application of Measurement-Based Load Modeling in Large-Scale Power Grids and its Validation,” IEEE Trans. on Power Systems, vol. 24, no. 4, pp. 1756-1764, November 2009.
[16] K. Madsen, H. B. Nielsen, and O. Tingleff, Methods for Non-Linear Least Squares Problems, 2nd Edition, April 2004.
[17] B.-Y. Ku, R. J. Thomas, C.-Y. Chiou, and C.-J. Lin, “Power System Dynamic Load Modeling Using Artificial Neural Networks,” IEEE Trans. on Power Systems, vol. 9, no. 4, pp. 1868-1874, November 1994.
[18] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme Learning Machine: Theory and Applications,” Neurocomputing, vol. 70, no. 1, pp. 489-501, 2006.
[19] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme learning machines: A review,” Neural Networks, vol. 61, no. 1, pp. 32-48, 2015.
[20] P. Regulski, D. S. Vilchis-Rodriguez, S. Djurović, and V. Terzija, “Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method,” IEEE Transactions on Power Delivery, vol. 30, no. 2, pp. 553-560, April 2015.
[21] A. H. Nizar, Z.-Y. Dong, and Y. Wang, “Power Utility Nontechnical Loss Analysis With Extreme Learning Machine Method,” IEEE Transactions on Power Systems, vol. 23. no. 3, pp. 946-955, August 2008.
[22] X. Chen, Z.-Y. Dong, K. Meng, Y. Xu, K.-P. Wong, and H. W. Ngan, “Electricity Price Forecasting With Extreme Learning Machine and Bootstrapping,” IEEE Transactions on Power Systems, vol. 27. no. 4, pp. 2055-2062, November 2012.
[23] C. Wan, Z. Xu, P. Pinson, Z.-Y. Dong, and K.-P. Wong, “Probabilistic Forecasting of Wind Power Generation Using Extreme Learning Machined,” IEEE Transactions on Power Systems, vol. 29. no. 3, pp. 1033-1044, May 2014.
[24] Y. Xu, Z.-Y. Dong, J.-H. Zhao, P. Zhang, and K.-P. Wong, “A Reliable Intelligent System for Real-Time Dynamic Security Assessment of Power Systems,” IEEE Transactions on Power Systems, vol. 27. no. 3, pp. 1253-1263, August 2012.
[25] G.-B. Huang, “An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels,” Cognitive Computation, vol. 6, pp. 376-390, 2014.
[26] Y. Xu, Z.-Y. Dong, Z. Xu, K. Meng, and K.-P. Wong, “An Intelligent Dynamic Security Assessment Framework for Power Systems With Wind Power,” IEEE Transactions on Industrial Informatics, vol. 8. no. 4, pp. 995-1003, November 2012.