研究生: |
徐帆毅 |
---|---|
論文名稱: |
研究晶種層或機械拘束對兩種鐵電薄膜之影響 Investigation of seeding effect and mechanical constraint effect on two ferroelectric thin films |
指導教授: |
胡塵滌
Chen-Ti Hu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 174 |
中文關鍵詞: | 應力 、constraint |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文共分為兩部分,第一部分是改變SBT薄膜中鉭(Ta)成分比率來瞭解鉭成分對SBT薄膜的微結構與極化特性的影響。並將此不同鉭成分SBT薄膜當作晶種層,來改善薄膜特性與降低缺陷造成的影響。本實驗結果發現改變鉭成分比率會明顯影響之後微結構及鐵電特性的表現,當鉭成分比率較化學計量比低時,本實驗採用SrBi2Ta1.8O9,可以發現其大晶粒成核與成長較快,且經過RTA750℃60s的處理後,顯微結構幾乎由均勻大晶粒組成,具有很好的殘留極化值18.37μC/cm2。而當鉭成分比率較化學計量比高時,本實驗採用SrBi2Ta2.2O9,發現有fluorite中間相,且細小晶粒所佔體積百分比很高,導致鐵電特性明顯降低。由此結果,減少SBT薄膜鉭成分比率具有改善鐵電性質與提升殘留極化值的效益。但是偏離劑量比會造成漏電流與電導率較高,因此利用缺少鉭成分SBT薄膜也可以得到均勻的顯微結構且較強a軸結晶方位,具有提升殘留極化值的效益與降低缺陷所造成的影響,使漏電流較低。
第二部份為為鐵電薄膜於結晶退火的過程中同時施加張或壓應變拘束,分別對SBT及PZT鐵電薄膜結晶特性與極化特性所形成影響之探討。PZT的結果中,退火施加機械拘束會顯著改變其結晶方向,而壓縮拘束會造成均勻的晶體方位,而舒張拘束會提高(100)繞射峰的比率,並且壓縮拘束會造成rhombohedral相PZT中生成monoclinic相;由鐵電及介電特性量測結果得知壓縮拘束的製程能改善PZT鐵電薄膜的鐵電及介電性質,其中殘餘極化值明顯的提升,推測可能是PZT鐵電薄膜中的晶體結構與鐵電域方向改變所致。
SBT的結果,退火施加舒張拘束能夠有效使SBT鐵電薄膜的晶粒尺寸增加,但是也會形成額外的二次相;壓縮拘束能夠有效使SBT二次相減少但是發現較多奈米晶粒的趨勢;由於觀察到SBT鐵電薄膜中二次相與奈米晶粒皆對極化值會造成下降,因此各種退火施加拘束製程的SBT鐵電薄膜的鐵電及介電性質皆與二次相與奈米晶粒的含量比率有關。
The Ta content effects on the ferroelectric properties of strontium bismuth tantalate SrBi2Ta2O9 (SBT) thin films synthesized using metalorganic decomposition (MOD) and spin coating techniques were investigated. The physical properties of these SBT samples were strongly dependent upon the Ta ratio. Polarization measurements revealed that Ta-deficient SBT exhibited a relatively low coercive field (2Ec = 87 kV/cm) and a high remanent polarization (2Pr = 15 μC/cm2); the value of 2Pr decreased as the Ta ratio in SBT increased. The improved ferroelectric properties of the Ta-deficient SBT samples may have resulted from the uniformly well-grown bismuth-layered-structured (BLS) phases of the films and their highly preferential orientation along the a and b axes. Author suggests that the incorporation of Ta vacancies plays an important role in enhancing the crystallinities and microstructures of Ta-deficient SBT films. Further, the seeding effect on the crystallization behaviors of the SrBi2Ta2O9 Aurivillius phase on top of the ultra thin (40nm) buffer/seeding layer, SrBi2Ta2xO9 (x=0.9, 1.0, or 1.1), was studied. The morphology and crystallographic orientation of complete SBT heterostructures were found to be highly dependent on the buffer layers with various Ta contents. The uniform microstructure and the preferred polar a-axis orientation within the SrBi2Ta1.8O9 buffered SrBi2Ta2O9 thin film were promoted; meanwhile, the optimized ferroelectric properties were achieved with 2Pr values about 19.7 μC/cm2, which was 93% greater than that of the stoichiometric buffered one. Since the off-stoichiometric buffer layer is too thin to influence the total composition of the seeded SBT layer, this heterostructure behaves moderate leakage property as compared with the stoichiometric SBT film. The off-stoichiometric thin buffer/seeding layer displays as a new method to improve the microstructure, polar a-axis orientation, and electric characterizations of SrBi2Ta2O9 thin films.
In the second section of this thesis, the effects of constraint during annealing on crystal structure and electric properties of the Pb (Zr0.6Ti0.4) O3 ferroelectric films were investigated. The external stress was applied though bending a circular section on the substrate, which effectively led to the variety of crystallographic orientation, structure, P-E behavior, dielectric, and fatigue properties in PZT. Meanwhile, the compression-annealed films enhanced the remanent polarization and the dielectric constant by ~68% and by ~70%, respectively. The observed variations of the ferroelectric behaviors with constraint–annealing can be reasonably interpreted by the crystal structure, especially phase construction and texture, which is dependent on the stress state. Either a tensile or a compressive mechanical constraint was also applied during annealing on SrBi2Ta2O9 (SBT) ferroelectric thin films with different thickness to investigate the effects of both thickness and stress on the physical and electric properties. Both the tensile and compressive stresses exerted pronounced effects on the volume fraction of the pyrochlore phase (ratio of perovskite vs. pyrochlore) and the grain growth mechanisms of the SBT films. These variations of structures became more significant in the relatively thinner films. The effects of the stress correlated with the crystallization temperatures. The stress applied to an SBT sample during its crystallization led to the creation of distinct microstructures and constituted phases of the film. Since the electrical properties of ferroelectrics were strongly depended on their microstructure, domain structure, and constituted phases, the SBT samples exhibited distinct ferroelectric behavior with the condition of various stressing and thickness.
Reference
1. C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Nature (London), 374, 627 (1995).
2. A.D. Li, D. Wu, H.Q. Ling, T. Yu, M. Wang, X.B. Yin, Z.G.Liu, N.B. Ming, J. Appl. Phys., 88, 1035 (2000).
3. R. Dat, J.K. Lee, O. Auciello, A.I. Kingon, Appl. Phys. Lett., 67, 572 (1995).
4. N.J. Seony, C.H. Yang, W.C. Shin, S.G. Yoon, Appl. Phys.Lett., 72, 1374 (1998).
5. R.W. Vest, Ferroelectrics, 102, 53 (1990).
6. K. Franke ,G. Matin , M. Weihnacht, and A. V. Sotnikov, Sol. Sta. Comm., 119, 117 (2001).
7. A.C. Rastogi, S. Tirumala, and S.B. Desu, Appl. Phys. Lett., 74, 3492 (1999).
8. Y.P. Wang, Y.X. Zhang, T. Zhu and Z.G. Liu, Scripta mater., 44, 2563 (2001).
9. G. Gonzalez Aguilar, A. Wu, M.A. Reis, A.R. Ramos , I.M. Mirand Salvado , E. Alves , and M.E.V. Costa, Surf. Sci., 600, 1780 (2006).
10. H. Amorın , A.L. Kholkin, and M.E.V. Costa, J. Eur. Ceram. Soc., 25, 2453 (2005).
11. G.G. Aguilar, M.E.V. Costa, and I.M. Miranda Salvado, J. Eur. Ceram. Soc., 25, 2331 (2005).
12. R. Ramesh, J. Lee, T. Sands, V.G. Keramidas, and O. Auciello, Appl. Phys. Let ., 64, 2511 (1994).
13. T. Hayashi, H. Takahashi, T. Hara, Jpn. J. Appl. Phys., 35, 4952 (1996).
14. S.-Y. Jung, S.-J. Hwang, and Y.-M. Sung, J. Mater. Res., 18, 1745 (2003).
15. Y.-M. Sung, G. M. Anilkumar, and S.-J. Hwang, J. Mater. Res., 18, 387 (2003).
16. T. Matsuki, Y. Hayashi, and T. Kunio, IEDM, 96, 691 (1996).
17. T. Atsuki, N. Soyama, T. Yonezawa, and K. Ogi, Jpn. J. Appl. Phys., 34, 5096 (1995).
18. K. Miura and M. Tanaka, Jpn. J. Appl. Phys., 37, 2554 (1998).
19. T. Noguchi, T. Hase, and Y. Miyasaka, Jpn. J. Appl. Phys., 35, 4900 (1996).
20. Y. Shimakawa, Y.Kubo, Y. Nakagowa, T.Kamiyama, H.Asano, F. Izumi, Appl. Phys. Lett., 74, 1904 (1999).
21. S.-Y.Chen and V.-C. Lee, J. Appl. Phys., 87, 8024 (2000).
22. T. Hase, T. Noguchi, K. Amanuma, and Y. Miyasaka, Integr. Ferroelectr., 15, 127 (1997).
23. T. A. Derouin, C.D.E. Lakeman, X.H. Wu, J.S. Speak, and F.F. Lange, J. Mater. Res., 12, 1391 (1997).
24. Y.H. Xu, C.H. Cheng, Y.D. Lou, and J.D. Mackenzie, Ferroelectrics, 195, 283 (1998).
25. W.-C. Shin and S.-G. Yoon, Appl. Phys. Lett., 79, 1519 (2001).
26. C.C. Leu, C.H. Chien, M.J. Yang, M.C. Yang, T.Y. Huang, H.T. Lin, and C.T. Hu, Appl. Phys. Lett., 80, 4600 (2002).
27. D. Miu, J.C. Martinez, L. Wiehl, R. Raitieri, and H. Adrian, Mater. Lett., 59, 1243 (2005).
28. C.C. Leu, C.H. Chien, F.Y. Hsu, H.T. Lin, and C.T. Hu, J. Electrochem. Soc. , 151, F167 (2004).
29. J. F. Scott and C. A. Paz de Araujo, Science, 246, 1400 (1989).
30. S.M. Spearing, Acta Mater., 48, 179 (2000).
31. T.J. Garino and M. Harrington, Mater. Res. Soc. Symp. Proc., 243, 341 (1992).
32. B.A. Tuttle, J.A. Voigt, T.J. Garino, D.C. Goodnow, R.W. Schwartz, D.L. Lamppa, T.J. Headley, and M.O. Eatough, in Proceedings of the IEEE 8th International Symposium on Applied Ferroelectrics, p. 344, (IEEE, New York, 1992).
33. G.A.C.M. Spierings, G.J.M. Dormans, W.G.J. Moors, M.J.E. Ulenaers, and P.K. Larsen, J. Appl. Phys., 78, 1926 (1995).
34. S.S. Sengupta, S.M. Park, D.A. Payne, and L.H. Allen, J. Appl. Phys., 83, 2291 (1998).
35. K. Morito and T. Suzuki, J. Appl. Phys., 97, 104107 (2005).
36. C.D.E. Lakeman, J.A. Ruffner, and T.J. Boyle, J. Sol-Gel Sci. Technol., 16, 83 (1999).
37. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science, 299, 1719 (2003).
38. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.Q. Chen, D.G. Schlom, C.B. Eom, Science, 306, 1005 (2004).
39. T. Kumazawa, Y. Kumagai, H. Miura, M. Kitano, and K. Kushida, Appl. Phys. Lett., 72, 608 (1998).
40. J.-W. Lee, G.-T. Park, C.-S. Park, and H.-E. Kim, Appl. Phys. Lett., 88, 072908 (2006).
41. X. Lu, J. Zhu, X. Li, Z. Zhang, X. Zhang, D. Wu, F. Yan, Y. Ding, and Y. Wang, Appl. Phys. Lett., 76, 3103 (2000).
42. X. Wu, X. Lu, Y. Kan, F. Huang, J. Ma, and J. Zhu, Appl. Phys. Lett., 89, 122910 (2006).
43. N. Fujimura, S. Tachibana, T. Ito, and N. Hosokawa, J. Appl. Phys., 73, 733 (1993).
44. H. Ohigashi, K. Omote, and T. Gomyo, Appl. Phys. Lett., 66, 3281 (1995).
45. S. Hazra, I. Sakata, M. Yamanaka, and E. Suzuki, Appl. Phys. Lett., 80, 4115 (2002).
46. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric ceramics, (Academic Press, New York, 1971), p. 50.
47. C.S. Lynch, Acta mater., 44, 4137 (1996).
48. B. K. Moon, K. Hironaka, C. Isobe, and S. Hishikawa, J. Appl. Phys., 89, 6370 (2001).
49. E.S. Kim and R.S. Muller, IEEE Electron Device Lett.,EDL 7, 254 (1987).
50. S.W. Wenzel and R.M. White, IEEE Trans. Electron Devices., ED-35, 735 (1988).
51. D.L. Polla, R.S. Muller, and R.M. White, IEEE Electron Device Lett., EDL-7, 254 (1986).
52. R.M. Morney, R.M. White, and R.T. Howe, Proceedings of the IEEE Ultrasonics Symposium, Montreal, 745 (1989).
53. D. Bondurant and F. Gnadinger, IEEE Spectrum., 26, 30 (1989).
54. M.H. Frey and D.A. Payne, Appl. Phys. Lett., 63, 2753 (1993).
55. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London), 136 (1971).
56. X. Du, J. Zheng, U. Belegundu, and K. Uchino, Appl. Phys. Lett., 72, 2421 (1998).
57. A. Boutarfaia, C. Boudaren, A. Mousser , and S.E. Bouaoud, Ceramics International., 21 , 391 (1995).
58. S. Yokoyama, Y. Honda, H. Morioka, G. Asano, T. Oikawa, T. Iijima, H. Matsuda and H. Funakubo, Jpn. J. Appl. Phys., 42, 5922 (2003).
59. H. Morioka, S. Yokoyama, T. Oikawa, H. Funakubo, and K. Saito, Appl. Phys. Lett., 85, 3516 (2004).
60. A. Ari-gur and L. Benguigui, Solid State Commun., 15, 1077 (1974).
61. A. Ari-gur and L. Benguigui, J. Phys. D., 8, 1856 (1975).
62. K. Kakegawa, J. Mohri, K. Takahasi, H. Yamamura, and S. Shirasaki, Solid State Commun., 24, 769 (1977).
63. K. Kakegawa, J. Mohri, S. Shirasaki, and K. Takahashi, J. Am. Ceram. Soc., 65, 515 (1982).
64. A.P. Singh, S.K. Mishra, D. Pandey, C.D. Prasad, and R. Lal, J. Mater. Sci., 28, 5050 (1993).
65. A.P. Singh, S.K. Mishra, R. Lal, and D. Pandey, Ferroelectrics, 163, 103 (1995).
66. K. Kakegawa, O. Matsunaga, T. Kato, and Y. Sasaki, J. Am. Ceram.Soc., 78, 1071 (1995).
67. J.C. Fernandes, D.A. Hall, M.R. Cockburn, and G.N. Greaves, Phys. Res. B., 97, 137 (1995).
68. E.R. Leite, M. Cequeira, L.A. Perzaoli, R.S. Nasar, E. Longo, and J.A. Varela, J. Am. Ceram. Soc., 79, 1563 (1996).
69. A. P. Wilkinson, J. Xu, S. Pattanaik, and S.J.L. Billinge, Chem. Mater., 10, 3611 (1998).
70. M. Hammer, C. Monty, A. Endriss, and M.J. Hoffmann, J. Am. Ceram. Soc., 81, 721 (1998).
71. W. Cao and L.E. Cross, Phys. Rev. B., 47, 4825 (1993).
72. Ragini, R. Ranjan, S.K. Mishra, and D. Pandey, J. Appl. Phys., 92, 3266 (2002).
73. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, and S.-E. Park, Appl. Phys. Lett., 74, 2059 (1999).
74. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox, and G. Shirane, Phys. Rev. B., 61, 8687 (2000).
75. R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, and G. Shirane, Phys. Rev. Lett., 84, 5423 (2000).
76. L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. Lett., 84, 5427 (2000).
77. B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, and L.E. Cross, Phys. Rev. B., 63, 014103 (2001).
78. D.E. Cox, B. Noheda, and G. Shirane, Y. Uesu, K. Fujishiro, and Y. Yamada, Appl. Phys. Lett., 79, 400 (2001).
79. A. Bouzid, E.M. Bourim, M. Gabbay, G. Fantozzi, Journal of the European Ceramic Society, 25,3213 (2005).
80. H. Cao, B. Fang, H. Xu, and H. Luo, Mater. Res. Bull. 37, 2135 (2002).
81. W. Gong, J.-F. Li, X. Chu, Z. Gui, and L. Li, J. Appl. Phys., 96, 590 (2004).
82. T. Oikawa, M. Aratani, and H. Funakubo, K. Saito and M. Mizuhira, J. Appl. Phys., 95, 3111 (2004).
83. H. Funakubo, K. Tokita, T. Oikawa, M. Aratani, and K. Saito, J. Appl. Phys., 92, 5448 (2002).
84. G.A. Smolenskii, V.A. Isupov, and A.I. Agranovskaya, Sov. Phys. Solid St., 3, 651 (1961).
85. E.C. Subbarao, J. Phys. Chem. Solids,,23, 665 (1962).
86. B.H. Park, S.J. Hyun, S.D. Bu, T.W. Noh, J. Lee, H.-D. Kim, T.H. Kim, and W. Jo, Appl. Phys. Lett. 74, 1907 (1999).
87. D. Ravichandran, K. Yamakawa, A.S. Bhalla, and R. Roy, Journal of Sol-Gel Science and technology, 9, 95 (1997).
88. N. Fujimura, D.T. Thomas, S.K. Streiffer, and A.I. Kingon, Jpn. J. Appl. Phys. 37, 5185 (1998).
89. R.E. Newham, R.W. Wolfe, R.S. Horsey, F.A. Diaz-Colon and M.I. Kay, Mater. Res. Bull., 8, 1183 (1973).
90. A.D. Rae, J.G. Thompson and R.L. Withers, Acta Crystallogr. B48 , 418 (1992).
91. J.H. Choi, J.Y. Lee, and Y.T. Kim, Appl. Phys. Lett., 74, 2933 (1999).
92. W. Hartner, Ph. D thesis: Formation and Characterization of SrBi2Ta2O9 (SBT) Thin Film Capacitor Module with Platinum/Titanium Bottom and Platinum Top Electrodes (2003).
93. M.A. Rodriguez, T.J. Boyle, C.D. Buchheit, R.G. Tissot, C.A. Drewien, B.A. Hernandez, and M.O. Eathough, Integrated Ferroelectrics, 14, 201 (1997).
94. T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, Jpn J. Appl. Phys. 37, 597 (1998).
95. I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, and M.Maeda, Jpn. J. Appl. Phys., 35, 4946 (1996).
96. K. Amanuma, T. Hase and Y. Miyasaka, Appl. Phys. Lett., 66, 221 (1995).
97. J.F. Scott, IEICE Trans. Electron., E81-C(4), 477 (1998).
98. O. Auciello, J.F. Scott, and R. Ramesh, Phys. Today, 22 (1998).
99. C.D. Gutleben, Mater. Res. Soc. Symp. Proc. 433, 109 (1996).
100. J.S. Lee, H.J. Kwon, Y.W. Jeong, H.H. Kim, S.J. Hyun and T.W. Noh, Appl. Phys. Lett., 74 ,2690 (1999).
101. A.J. Hartman, R.N. Lamb, J.F. Scott, P.N. Johnston, M. El Bouanani, C.W. Chen, and J. Robertson, Journal of the Korean Physical Society, 132, S1329 (1998).
102. C.-H. Lu, B.-K. Fang and C.-Y. Wen, Jpn. J. Appl. Phys., 39, 5573 (2000).
103. Z.G. Zhang, J.S. Liu, Y.N. Wang, J.S. Zhu, J.L. Liu, D. Sul, and H.M. Shen, J. Appl. Phys. 85, 1746 (1999).
104. M.A. Rodriguez, T.J. Boyle, B.A. Hernandez, C.D. Buchheit, and M.O. Eatough, J. Mater. Res , 11, 2282 (1996).
105. T-C.Chen, T. Li , X. Zhang , and S.B. Desu , J. Mater.Res., 12, 1569 (1997).
106. P. Tejedor, C. Ocal,E. barrena , R. Jimenez, C. Alemany, and J. Mendiola, Appl. Sur. Sci. , 175,759 (2001).
107. H. Watanabe, T. Mihara, H. Yosgimori , and C.A.P. de Araujo, Jpn. J. Appl. Phys., 34, 5240 (1995).
108. K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi, and J.F. Scott, Appl. Phys. Lett., 73, 126 (1998).
109. S. Bhattacharyya, A. Laha, and S.B. Krupanidhi, J. Appl. Phys., 92, 1056 (2002).
110. J.-J. Choi, C.-S. Park, G.-T. Park, and H.-E. Kim, Appl. Phys. Lett., 85, 4621 (2004).
111. E.M. Alkoy, K. Uchiyama, and T. Shiosaki, and S. Alkoy, J. Appl. Phys., 99, 106106 (2006).
112. A. Wu, I.M.M. Salvado, P.M. Vilarinho, and J.L. Baptista, J. Eur. Ceram. Soc, 17, 1443 (1997).
113. K.H. Yoon, H.C. Shin, and J. Park, D.H. Kang, J. Appl. Phys., 92, 2108 (2002).
114. H.J. Jung and T.S. Kim, J. Appl. Phys., 79, 9245 (1996).
115. Y.L. Li, S. Choudhury, Z.K. Liu, and L.Q. Chen, Appl. Phys. Lett., 83, 1608 (2003).
116. J. Lappalainen, J. Frantti, and V. Lantto, J. Appl. Phys. 82, 3469 (1997).
117. Berfield et al. J. Appl. Phys., 101, 024102 (2007).
118. L. Lian and N.R. Sottos, J. Appl. Phys. 87, 3941 (2000).
119. G.A. Rossetti, Jr., L.E. Cross, and K. Kushida, Appl. Phys. Lett., 59, 2524 (1991).
120. K.R. Udayakumar, P.J. Schuele, J. Chen, S.B. Krupanidhi, and L.E. Cross, J. Appl. Phys., 77, 3981 (1995).
121. X. Wu, X. Lu, A. Chen, Y. Yin, J. Ma, W. Li, Y. Kan, D. Qian, and J. Zhu, Appl. Phys. Lett., 86, 092904 (2005).
122. S.H. Oh and H.M. Jang, Appl. Phys. Lett., 72, 1457 (1998).
123. S.H. Oh and H.M. Jang, Phys. Rev., 62,14757 (2000).
124. J.S. Speck and W. Pompe, J. Appl. Phys., 76, 466 (1994).
125. S.P. Alpay and A.L. Roytburd, J. Appl. Phys., 83, 4714 (1998).
126. N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Phys. Rev. Lett., 80, 1988 (1998).
127. V.G. Koukhar, N.A. Pertsev, and R. Waser, Phys. Rev., 64, 214103 (2001).
128. Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen, Appl. Phys. Lett., 78, 3878 (2001).
129. L. Yan, J. Li, H. Cao, and D. Viehland, Appl. Phys. Lett., 89, 262905 (2005).
130. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, and S.E. Park, Appl. Phys. Lett., 74, 2059 (1999).
131. N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Phys. Rev. Lett., 80, 1988 (1998).
132. Z.G. Ban and S.P. Alpay, J. Appl. Phys., 93, 504 (2003).
133. G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang, and D. Viehland, Appl. Phys. Lett., 86, 182905 (2005).
134. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science, 299, 1719 (2003).
135. Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen, Appl. Phys. Lett., 78, 3878 (2001).
136. Y.L. Li, S.Y. Hu, and L.Q. Chen, J. Appl. Phys., 97, 034112 (2005).
137. V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello and R. Ramesh, Nature Materials, 2, 43 (2003).
138. A.L. Roytburd, S.P. Alpay, V. Nagarajan, C.S. Ganpule, and S. Aggarwal, E.D. Williams, R. Ramesh, Phys. Rev. Lett., 85, p.190 (2001).
139. S.Y. Kweon, S.H. Yi, and S.K. Choi, J. Vac. Sci. Technol. A, 15, 57 (1997).
140. S.B. Desu, Phys. Status Solidi A, 141, 119 (1994).
141. J.-K. Lee, C.-H. Kim, H.-S. Suh, and K.-S. Hong, Appl. Phys. Lett., 80, 3593 (2002).
142. K. Khachatutyan, J. Appl. Phys. 77, 6449 (1995).
143. J.S. Liu, S.R. Zhang, L.S. Dai, and Y. Yuan, J. Appl. Phys., 97, 104102 (2005).
144. J.S. Liu, S.R. Zhang, and H.Z. Zeng, W.D. Fei and S.Y. Du , J. Appl. Phys., 99, 094103 (2006).
145. M.B. Kelman, P.C. McIntyre, B.C. Hendrix, S.M. Bilodeau, and J.F. Roeder, J. Appl. Phys., 93, 9231 (2003).
146. 呂奕賢, Master thesis: Nanoscale Characterization of Bismuth Ferrite Films by Scanning Probe Microscopy (2005).
147. X. Zheng, J. Li, Y. Zhou, Acta Materialia, 52, 3313 (2004).
148.http://web.nchu.edu.tw/~weite/chi/chi-l/input-l02/MyWebs/stressintroduction.htm
149. K. Yao, S. Yu, and F.E.-H. Tay, Appl. Phys. Lett., 82, 4540 (2003).
150. X.J. Zheng, Z.Y. Yang, Y.C. Zhou, Scripta Materialia, 49, 71 (2003).
151. S.B. Ren, C.J. Lu, H.M. Shen, and Y.N.Wang, Phys. Rev. B, 55, 3485 (1997).
152. W.C. Kwak and Y-M. Sung, J. Mater. Res., 17, 1463 (2002).
153. C.M. Palanduz and D.M. Smyth, J. Eur. Ceram. Soc., 19, 731 (1999).
154. S.Y. Chen, B.C. Lan, and C.S. Taso, J. Appl. Phys., 91, 10032 (2002).
155. S.H. Kim, D.J. Kim, J.P. Maria, A.I. Kingon ,S.K. Streiffer, J. Im, O. Auciello, and A.R. Krauss, Appl. Phys. Lett., 76, 496 (2000).
156. R. Bungener, W. Pamler, and U. Gosele, Mater. Sci. Semi. Proce. , 6, 43 (2003).
157. Q. Tan, J. Li, and D. Viehland, Appl. Phys. Lett., 75, 418 (1999).
158. D. Viehland and Y.H. Chen, J. Appl. Phys., 88, 6696 (2000).
159. D.A. Shirley, Phys. Rev. B, 5, 4709 (1972).
160. J.H. Thomas III and L.H. Hammer, J. Electrochem. Soc., 136, 2004 (1989).
161. S. Hofman and J.M. Sanz, J. Trace Microprobe Tech., 1, 213 (1982).
162. G.L. Yuan, J.-M. Liu, Y.P. Wang, D.Wu, S.T. Zhang, Q.Y. Shao, and Z.G. Liu, Appl. Phys. Lett., 76, 2208 (2000).
163. D. Wu, A. Li , H. Ling, T. Yu, Z. Liu, and N. Ming, Appl. Phys. Lett., 84, 3352 (2004).
164. J. Robertson, C.W. Chen, W.L. Warren, and C.D. Gutleben, Appl. Phys. Lett.,69, 1704 (1996).
165. M. Moert, G. Schindler, T. Mikolajick, N. Nagel, W. Hartner, C. Dehm, H. Kohlstedt, and R. Waser, Appl. Surf. Sci., 249, 23 (2005).
166. R. Bruchhaus, D. Pitzer, R. Primig, M. Schreiter, and W. Wersing, Integrated Ferroelectrics, 21, 461 (1998).
167. Y. Okada and Y. Tokumaru, J. Appl. Phys., 56, 314 (1984).
168. F. Yan, X. Chen, P. Bao, Y. Wang, and J. Liu, J. Appl. Phys., 87, 1453 (2000).
169. X. Zhu, J. Zhu, S. Zhou, Q. Li, Z. Liu, and N. Ming, Appl. Phys. Lett., 79, 1345 (2001).
170. K. Babooram and Z.-G. Ye, Chem. Mater., 18, 532 (2006).
171. I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, and M.Maeda, Jpn. J. Appl. Phys. 35, 4946 (1996).
172. H. Bachhofer, H. von Philipsborn , W. Hartner ,C. Dehm , B. Jobst, A. Kiendl, H. Schroeder and R. Waser, J. Mater. Res., 16, 2966 (2001).
173. Y.P. Wang, H.F. Ning, L. Zhou, J.K. Shen, and Z.G. Liu, Appl. Phys. Lett., 83, 743 (2003).
174. C.C. Leu, M.C. Yang, C.T. Hu, C.H. Chien, M.J. Yang, and T.Y. Huang, Appl. Phys. Lett., 79 , 3833 (2001).
175. R. Waser, U. Böttger, and M. Grossmann: Ferroelectric Random Access Memories, Topics Appl. Phys., 93, 31 (2004).
176. S. Yokoyama, Y. Honda, H. Morioka, S. Okamoto, H. Funakubo, T. Iijima, H. Matsuda, K. Saito, T. Yamamoto, H. Okino, O. Sakata, and S. Kimura, J. Appl. Phys., 98, 094106 (2005).
177. A.Q. Jiang, J.F. Scott, M. Dawber, and C. Wang, J. Appl. Phys., 92, 6756 (2002).
178. H.M. Duiker, P.D. Beale, J.F. Scott, C.A. Araujo, B.M. Melnick, J.D. Cuchiaro, and L.D. McMillan, J. Appl. Phys., 68, 5783 (1990).
179. M. Dawber and J.F. Scott, Appl. Phys. Lett., 76, 1060 (2000).
180. J.F. Scott and M. Dawber, Appl. Phys. Lett., 76, 3801 (2000).
181. A.K. Tagantsev, I. Stdichnov, E.L. Colla, and N. Setter, J. Appl. Phys. 90, 1387 (2001).
182. G.D. Hu, J.B. Xu, and I.H. Wilson, Appl. Phys. Lett., 75, 1610 (1999).
183. G. Arlt and N.A. Pertsev, J. Appl. Phys. 70, 2283 (1990).