簡易檢索 / 詳目顯示

研究生: 徐帆毅
論文名稱: 研究晶種層或機械拘束對兩種鐵電薄膜之影響
Investigation of seeding effect and mechanical constraint effect on two ferroelectric thin films
指導教授: 胡塵滌
Chen-Ti Hu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 174
中文關鍵詞: 應力constraint
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文共分為兩部分,第一部分是改變SBT薄膜中鉭(Ta)成分比率來瞭解鉭成分對SBT薄膜的微結構與極化特性的影響。並將此不同鉭成分SBT薄膜當作晶種層,來改善薄膜特性與降低缺陷造成的影響。本實驗結果發現改變鉭成分比率會明顯影響之後微結構及鐵電特性的表現,當鉭成分比率較化學計量比低時,本實驗採用SrBi2Ta1.8O9,可以發現其大晶粒成核與成長較快,且經過RTA750℃60s的處理後,顯微結構幾乎由均勻大晶粒組成,具有很好的殘留極化值18.37μC/cm2。而當鉭成分比率較化學計量比高時,本實驗採用SrBi2Ta2.2O9,發現有fluorite中間相,且細小晶粒所佔體積百分比很高,導致鐵電特性明顯降低。由此結果,減少SBT薄膜鉭成分比率具有改善鐵電性質與提升殘留極化值的效益。但是偏離劑量比會造成漏電流與電導率較高,因此利用缺少鉭成分SBT薄膜也可以得到均勻的顯微結構且較強a軸結晶方位,具有提升殘留極化值的效益與降低缺陷所造成的影響,使漏電流較低。
    第二部份為為鐵電薄膜於結晶退火的過程中同時施加張或壓應變拘束,分別對SBT及PZT鐵電薄膜結晶特性與極化特性所形成影響之探討。PZT的結果中,退火施加機械拘束會顯著改變其結晶方向,而壓縮拘束會造成均勻的晶體方位,而舒張拘束會提高(100)繞射峰的比率,並且壓縮拘束會造成rhombohedral相PZT中生成monoclinic相;由鐵電及介電特性量測結果得知壓縮拘束的製程能改善PZT鐵電薄膜的鐵電及介電性質,其中殘餘極化值明顯的提升,推測可能是PZT鐵電薄膜中的晶體結構與鐵電域方向改變所致。
    SBT的結果,退火施加舒張拘束能夠有效使SBT鐵電薄膜的晶粒尺寸增加,但是也會形成額外的二次相;壓縮拘束能夠有效使SBT二次相減少但是發現較多奈米晶粒的趨勢;由於觀察到SBT鐵電薄膜中二次相與奈米晶粒皆對極化值會造成下降,因此各種退火施加拘束製程的SBT鐵電薄膜的鐵電及介電性質皆與二次相與奈米晶粒的含量比率有關。


    The Ta content effects on the ferroelectric properties of strontium bismuth tantalate SrBi2Ta2O9 (SBT) thin films synthesized using metalorganic decomposition (MOD) and spin coating techniques were investigated. The physical properties of these SBT samples were strongly dependent upon the Ta ratio. Polarization measurements revealed that Ta-deficient SBT exhibited a relatively low coercive field (2Ec = 87 kV/cm) and a high remanent polarization (2Pr = 15 μC/cm2); the value of 2Pr decreased as the Ta ratio in SBT increased. The improved ferroelectric properties of the Ta-deficient SBT samples may have resulted from the uniformly well-grown bismuth-layered-structured (BLS) phases of the films and their highly preferential orientation along the a and b axes. Author suggests that the incorporation of Ta vacancies plays an important role in enhancing the crystallinities and microstructures of Ta-deficient SBT films. Further, the seeding effect on the crystallization behaviors of the SrBi2Ta2O9 Aurivillius phase on top of the ultra thin (40nm) buffer/seeding layer, SrBi2Ta2xO9 (x=0.9, 1.0, or 1.1), was studied. The morphology and crystallographic orientation of complete SBT heterostructures were found to be highly dependent on the buffer layers with various Ta contents. The uniform microstructure and the preferred polar a-axis orientation within the SrBi2Ta1.8O9 buffered SrBi2Ta2O9 thin film were promoted; meanwhile, the optimized ferroelectric properties were achieved with 2Pr values about 19.7 μC/cm2, which was 93% greater than that of the stoichiometric buffered one. Since the off-stoichiometric buffer layer is too thin to influence the total composition of the seeded SBT layer, this heterostructure behaves moderate leakage property as compared with the stoichiometric SBT film. The off-stoichiometric thin buffer/seeding layer displays as a new method to improve the microstructure, polar a-axis orientation, and electric characterizations of SrBi2Ta2O9 thin films.
    In the second section of this thesis, the effects of constraint during annealing on crystal structure and electric properties of the Pb (Zr0.6Ti0.4) O3 ferroelectric films were investigated. The external stress was applied though bending a circular section on the substrate, which effectively led to the variety of crystallographic orientation, structure, P-E behavior, dielectric, and fatigue properties in PZT. Meanwhile, the compression-annealed films enhanced the remanent polarization and the dielectric constant by ~68% and by ~70%, respectively. The observed variations of the ferroelectric behaviors with constraint–annealing can be reasonably interpreted by the crystal structure, especially phase construction and texture, which is dependent on the stress state. Either a tensile or a compressive mechanical constraint was also applied during annealing on SrBi2Ta2O9 (SBT) ferroelectric thin films with different thickness to investigate the effects of both thickness and stress on the physical and electric properties. Both the tensile and compressive stresses exerted pronounced effects on the volume fraction of the pyrochlore phase (ratio of perovskite vs. pyrochlore) and the grain growth mechanisms of the SBT films. These variations of structures became more significant in the relatively thinner films. The effects of the stress correlated with the crystallization temperatures. The stress applied to an SBT sample during its crystallization led to the creation of distinct microstructures and constituted phases of the film. Since the electrical properties of ferroelectrics were strongly depended on their microstructure, domain structure, and constituted phases, the SBT samples exhibited distinct ferroelectric behavior with the condition of various stressing and thickness.

    Table of contents Abstract...................................................................................................................................i Table of contents...................................................................................................................iv Table captions......................................................................................................................vii Figure captions...................................................................................................................viii Chapter 1. Introduction........................................................................................................1 PartⅠ.......................................................................................................................................1 1.1 Investigation into the effects of Ta content and SrBi2Ta2xO9 seeding on the properties of SrBi2Ta2O9 ferroelectric thin films………………………………………….…...…1 1.1.1 General background…………………………………..………………….……….1 1.1.2 Motivation and objective of present study…………………..…………….……...2 PartⅡ…………………………………………………………………..…………......……...2 1.2 Effects of stress on the properties of ferroelectrics……………..…………….………2 1.2.1 General background………………………………………..…………….……….2 1.2.2 Motivation and objective of present study…………………..……………………4 1.3 Overview of this dissertation…………………………………..…………….…...…...4 Chapter 2. Literature study .................................................................................................6 2.1 Ferroelectricity and piezoelectricity………………………………..……………..…..6 2.2 Lead zirconate titanate, PZT…………………………………….…………..…...…...7 2.2.1 Pervoskite structure…………………………………………..…………….…......8 2.2.2 Phase diagram………………………………………………………….….……...8 2.2.3 Crystallographic orientation vs. polar direction………………………..………..10 2.3 Strontium bismuth tantalate, SBT……………………………………….…………..12 2.3.1 The Bismuth-layered Perovskites………………………………….….……..….12 2.3.2 Phase diagram……………………………………………….……………..……13 PartⅠ…………………………………………………………………...…..…………...….14 2.4 Effects of composition on SBT thin films and seeding on ferroelectric films…...….14 2.4.1 Influence of various composition on the SBT thin films…………………….….14 2.4.2 Seeding effect on the ferroelectric thin films…………………………….……...16 2.4.2.1 The effect of buffer layer on the ferroelectric thin films………………..…..16 2.4.2.2 The effect of Aurivillius seeding layer on the ferroelectric thin films….…..16 PartⅡ……………………………………………………………………..………………...17 2.5 Constraint effect on ferroelectric thin films…………………………………………17 2.5.1 Origins and evolution of stress development in ferroelectric thin films…….…..17 2.5.2 Effect of external stress on physical and electric properties in ferroelectric thin film………………………………………………………………………………20 2.5.2.1 Effect of stress on phase diagram and domain construction……………….20 2.5.2.2 Effect of stress on the electric properties…………...…………………….. 22 Chapter 3. Experimental Procedures................................................................................77 3.1 Substrate preparation………………………………………………………....…..….77 3.2 Fabrication of ferroelectric thin film……………………………………….…..…....77 3.2.1 Metal-Organic Decomposition (MOD) or Chemical Solution Deposition (CSD)…..…………………………………………………………………..…...77 PartⅠ………………………………………………………………………………….........78 3.2.2 Influence of Ta content on the physical properties of SrBi2Ta2O9 ferroelectric thin films……………..…………………………………………………....………....78 3.2.3 Seeding effect of SrBi2Ta2xO9 thin buffer layer on crystallization and electric properties of SrBi2Ta2O9 thin films…………………………………...….…....79 PartⅡ…………………………………………………………………………...….………..79 3.2.4 Physical and electrical characteristics of SBT ferroelectric thin films with different thickness and varied mechanical constraints during annealing…….....79 3.2.5 Constraint-annealing effect on the texture and ferroelectric properties of polycrystalline Pb(Zr0.6 Ti0.4)O3 thin films…………………………….………..80 3.3 Characteristic measurements……………………………………………….………...81 3.3.1 Structural analysis…………………………………….………………….………81 3.3.1.1 X-ray Diffraction, XRD………………………….…………………...……..81 3.3.1.2 Field Emission Scanning Electron Microscopy, FESEM…………………...82 3.3.1.3 Piezoresponce Force Microscopy………...…………………………………82 3.3.2 Compositional depth profile and chemical bonding……………………………..83 3.3.2.1 Inductively coupled plasma mass spectrometry (ICPMS)…………………..83 3.3.2.2 X-ray Photoelectron Spectroscopy (XPS)…………………………...……...83 3.3.2.3 Secondary Ion Mass Spectroscopy (SIMS)…………………………..……..84 3.3.3 Residual stress analysis…………………………………………………..………84 3.3.4 Electrical properties………………………………………………...……….…...85 3.3.4.1 Ferroelectric properties……………………………………………….……..85 3.3.4.2 Dielectric properties………………………………………………….……...87 3.3.4.3 I-V properties………………………………………………………………..87 4. RESULTS AND DISCUSSIONS PartⅠ........................................................................95 4.1 Influence of Ta content on the physical properties of SrBi2Ta2O9 ferroelectric thin films……………………………………………………………………….……….…95 4.1.1 Sample Preparation (as same as Ch. 3.2.2) ………………………….……….….95 4.1.2 Ferroelectric properties……………………………………………….………….95 4.1.3 Crystal structure of SBT thin films…………………………………..……..……96 4.1.4 Microstructure of SBT thin films……………………………………..……....…98 4.1.5 Defect chemistry of various Ta content in SBT………………………...……….99 4.1.6 Fatigue endurance of various SBT capacitors………………………………….102 4.1.7 Summary……………………………………………………………………..…103 4.2 Seeding effect of SrBi2Ta2xO9 thin buffer layer on crystallization and electric properties of SrBi2Ta2O9 thin films……………………..…………………………104 4.2.1 Sample Preparation (as same as Ch. 3.2.3)……………………………………..104 4.2.2 Depth profile and surface morphology of SBT/buffer heterostructures……..…104 4.2.3 Crystal structure…………………………………………………………….…..105 4.2.4 Electrical properties…………………………………………………………….105 4.2.5 Summary……………………………………………………………………..…106 5. RESULTS AND DISCUSSIONS PartⅡ......................................................................123 5.1 Constraint-annealing effect on the texture and ferroelectric properties of polycrystalline Pb(Zr0.6 Ti0.4)O3 thin films…………………………………….…..123 5.1.1 Samples preparation (as same as Ch. 3.2.5)……………………………...…….123 5.1.2 Crystal structure and Surface morphology……………………………….….…123 5.1.3 Ferroelectric properties……………………………………………….……..….126 5.1.4 Summary……………………………………………………………………..…129 5.2 Mechanical constraint effect on the crystallinity and the ferroelectric properties of 200nm SrBi2Ta2O9 thin films……………………………………...….…..……….129 5.2.1 Sample Prepartion (as same as Ch. 3.2.4)………………………...……………130 5.2.2 Residual stress of 200nm SBT thin film………………………………………..131 5.2.3 Crystal structure of 200nm SBT thin film…………………………...…………133 5.2.4 Surface morphology of 200nm SBT………………………………...………….134 5.2.5 Ferroelectric properties of 200nm SBT thin films………………………...……135 5.2.6 Summary……………………………………………………..……….……..….137 5.3 Physical and electrical characteristics of SBT ferroelectric thin films with different thickness and varied stresses during annealing……………………...…………….137 5.3.1 Residual stress of SBT thin film with different thickness………………...……137 5.3.2 Ferroelectric properties…………………………………………………...….…138 5.3.3 Crystal structure……………………………………………………...…………138 5.3.4 Surface morphology…………………………………………………………….139 5.3.5 Summary………………………………………………………………………..140 Chapter 6. Conclusion and Future Work.........................................................................162 6.1 Conclusion………………………………………………………………...………...162 6.2 Suggestion for future work………………………………………………………….163 References............................................................................................................................165 Table Captions Chapter 2 Table. 2-1. Stress development at different stages during preparation of SBT films …………………………………………………………………………...62 Table. 2-2. Volume fraction of c domains, Vc , as a function of strain…………...............65 Table. 2-3. Residual stress and measured property data for each thickness………………68 Chapter 3 Table 3-1 Instruments used in PFM measurements……………………...………………91 Chapter 4 Table. 4-1. AC conductivities (measured at 10 Hz and room temperature) of SBT films incorporating different Ta contents……………………………...……............108 Table.4-2. Photospectroscopic peak positions for Ta and its oxides. Observed positions are those of Ta22; they exhibited a systematic shift of ca. 0.2 eV from the expected values as a result of instrumental offset………………....................................108 Table. 4-3.Relative amounts (high to low) of Ta oxidation states in different SBT films, as measured from XPS spectra…………………………………...…..................109 Chapter 5 Table. 5-1. Extracted residual stresses (determined using the XRD sin2ψ method) and calculated stresses during crystallization of SBT films (units: MPa)…...…...142 Table. 5-2. Extracted residual stresses (determined using the XRD sin2ψ method) of SBT films with different thickness (units: MPa)…………………….……..……..142 Figure Captions Chapter 2 Figure 2-1. Piezoelectricity, described by the converse piezoelectric effect, is a linear relationship between strain and electric field……………………………...27 Figure 2-2. (a) Electric-displacement-electric-field hysteresis loop (b) Longitudinal-strain-electric field hysteresis loop after several cycles…….27 Figure 2-3. Ferroelectric ABO3 perovskite structure…………………………...………28 Figure 2-4. PZT phase diagram after Jaffe et al.………………………………..………28 Figure 2-5. Rhombohedral structure of PZT…………………………………………....29 Figure 2-6. Tetragonal structure of PZT………………………………………………..29 Figure 2-7. Dielectric constant of PZT with various compositions ………………....….30 Figure 2-8. Piezoelectric constant of PZT with various compositions …………………31 Figure 2-9. XRD patterns of PZT films with various Zr/Zr+Ti ratios ………….......….32 Figure 2-10. Zr/(Zr+Ti) ratio dependence of (a) lattice parameters and (b) volume fraction of tetragonal-PZT and rhombohedral-PZT calculated from the XRD-RSM results for 2.0-mm-thick PZT films.……………………….….33 Figure 2-11. Zr/ (Zr+Ti) ratio dependency of (a) lattice parameters of a and c-axes and (b) c/a ratio and axial angle for 50 and 250 nm thick PZT films. The constituent phase is also shown in the figures. (T) and (R) show the tetragonal and rhombohedral symmetries.………………………...………34 Figure 2-12. C, R, and T represent the cubic, rhombohedral, and tetragonal regions. The diagonally shaded MA area in the PZT diagram represents the stability region of the recently discovered monoclinic phase ……………………...35 Figure. 2-13. PZT phase diagram. M for monoclinic phase ………………..….………35 Figure 2-14. Spontaneous polarization for (a) [001], (b) [110], and (c) [111] tetragonal PZT …………………………………………………………………….….36 Figure 2-15. Spontaneous polarization for (111) and [100] rhombohedral PZT….....…36 Figure 2-16. Possible polarization orientations in textured PZT films. (a) and (b) illustrate the possible polarization orientations in rhombohedral PZT films with (111) and (100) texture, respectively. (c) and (d) illustrate the possible polarization orientations in tetragonal PZT films with (111) and (100) texture, respectively …………………………………………………..…..37 Figure 2-17. (a)Psat , (b)Pr from P–E hysteresis loops, and (c) dielectric constant at 1 kHz, as a function of the value of x ………………………………..……38 Figure 2-18.Saturation properties of Pr (a), (b), and (c). (a) Tetragonal PZT films around x=0.30,(b) around x=0.50, and (c) x=0.60……………………………......39 Figure 2-19. Deposition temperature dependence of (a) the remanent polarization (Pr) and (b) coercive field (Ec) of PZT films with the Zr/(Zr+Ti) ratio of 0.35 and 0.62……………………………………………………………….…..39 Figure 2-20. Deposition temperature dependence of the relative dielectric constant at 1 kHz and leakage current density for PZT films with the Zr/(Zr+Ti) ratio of 0.35 and 0.62………………………………………………………………40 Figure 2-21. (a) TEM picture of the Aurivillius phase with the Bismuth oxide-double layers marked with arrows. (b) Schematic structure of the Aurivillius phase indicating the ferroelectric active Perovskite unit A……………………...41 Figure 2-22. Ternary phase diagram showing stable phases in the SBT system. The reference point for stoichiometric Aurivillius SBT is SrBi2Ta2 or Ta=2/5, Bi=2/5 and Sr=1/5. The dashed line goes through the stoichiometric SrBi2Ta2 point and corresponds to varying Bi content with Sr/Ta always being the same: SrBixTa2 with x=0→∞. The pyrochlore phases are found with less Bi (Bi<2/5) and the fluorite phases with excess Bi (Bi>2/5).……………………………………………………………..……42 Figure 2-23. Schematic representation of the Sr–Bi–Ta–O fluorite phase. In this figure the atomic ordering is not considered………………………………43 Figure 2-24. Ideal crystal structure of pyrochlore Phase……………………..………...43 Figure 2-25. P-E hysteresis curves of SBIT (x/y/2.0)/Pt/Ta films…………....………..44 Figure 2-26. SEM images of SBIT (0.7/y/2.0) films deposited on the Pt/Ta substrates with various Bi compositions ……………………………………………45 Figure 2-27.Variation of 2Pr with (a) Sr deficiency and (b) excess Bi amount..….……46 Figure 2-28. Fatigue properties of 800°C-processed capacitors measured with 5V bipolar switching pulses ……………………………………………………….....47 Figure 2-29. Variation of remanent polarization (2Pr) values with different Sr contents in SBN films (180 nm). Data of SBT films (180 nm) are also shown in this graph. Voltages applied to SBN and SBT were 7 and 5 V, respectively.…47 Figure 2-30. The remanent polarization (Pr) and dielectric constant as a function of Sr content …………………………………………………………..….…..…48 Figure 2-31. Figure 2-31. (a) The trap concentration and (b) the transition temperature as a function of the Sr content ……………………………….…..…………..49 Figure 2-32. Effect of the amount of bismuth on 2Pr and 2Ec of SrBi2xTa2O9 films……50 Figure 2-33. X-ray scans from SBT films prepared on Pt/TiO2/SiO2/Si substrates at a substrate temperature of 700°C. a: without LSCMO buffer layer and b: using LSCMO buffer layer with a thickness of 0.45mm ……………….…51 Figure 2-34. XRD spectra for SBN films with various Sr content C-axis orientation becomes stronger with increase in Sr contents ………………………...….51 Figure 2-35. P–E hysteresis loops of the SBT capacitors with various structures annealed at 750 °C for 30 min in oxygen atmosphere ………………………..…….52 Figure 2-36. Morphology of PZT film: (a) TEM bright field image showing PZT, La2O3, and Pt layers, and (b) HRTEM image showing the PZT and LaNit buffer layers…………………………………………………………...…………53 Figure 2-37. SEM images of plan and cross-sectional views of (a,b) unseeded and (c,d) seeded SBT films coated on seed layer/Pt/Ti/SiO2/Si substrates and heated at 740 °C for 160 min. Here, A and P denote Aurivillius and pyrochlore crystals, respectively ………………………………………….……..…..54 Figure 2-38. Surface and cross section SEM images of SBT thin films heat treated at 720 ◦C: (A) unseeded film surface; (B) unseeded film cross section; (C) seeded film surface; and (D) seeded film cross section ……..…………..………55 Figure 2-39. Schematic diagrams showing proposed nucleation and crystal growth mechanisms of (a) unseeded and (b) seeded SBT thin films. Here, S denotes the possible seed sites ……..…………………………..……….56 Figure 2-40. Arrhenius plots indicating the activation energy involved in the fluorite-to-Aurivillius phase transformation for unseeded and seeded SBT thin films …………………………………………………………..……....57 Figure 2-41. Percentage of the perovskite phase versus firing time at 410°C, for PZT films derived from precursor Y2 with various concentration of seeds …..57 Figure 2-42. Glancing angle XRD patterns of the Pb1.2ZrxTi12xO3 thin films for a seed layer on the Pt (111)/Ti/SiO2 /Si(100) substrate: x=(a) 0.65, (b) 0.52, (c) 0.30, and (d) 0 .……………………………………………………………58 Figure 2-43. XRD patterns of the PZSTN (40/15/2) thin films on a Pb1.2ZrxTi1-xO3 seed layer; x= (a) 0.65, (b) 0.52, (c) 0.30, and (d) 0……..…………….……….58 Figure 2-44. X-ray diffraction patterns of PZT thin films with and without PZ buffer layers……………………………………………………………………..59 Figure 2-45. Polarization fatigue behavior of PZT thin films with and without PZ buffer layers higher fatigue field amplitudes were used in the case of multilayers to overcome the screening effect of the buffer…………………………..59 Figure 2-46. Stress development on thermal cycling for a single layer on silicon …………………………………………………………………..……60 Figure 2-47. Stress development on cooling for multideposited layers ………..………60 Figure 2-48. Thermal-expansion coefficients for PbZr0.52Ti0.48O3 with 1% NbO ceramics for unpoled (a) and poled material ………………………………………61 Figure 2-49. Stress for three cases: (a) unpoled polycrystalline PZT, (b) poled polycrystalline PZT with the polarization directed parallel to the plane of the film, and (c) the same with the polarization directed perpendicular to the surface in a 220 nmPZT film prepared as a function of temperature during thermal cycling from 25 to 550 ˚C ..............................................................61 Figure 2-50. The computed phase diagram of PZT system, showing the effect of two-dimensional compressive stress on the shift of the MPB and Tc . The solid lines represent the MPB and Tc in the absence of the compressive stress. On the other hand, the dotted lines correspond to those under the stress………………………………………………………….…………..63 Figure 2-51. Illustration of geometry of zones with respect to monoclinic distortion and orientation of in-plane compressive stress……………………….………..63 Figure 2-52. Comparison of the phase diagrams of a PZT film under the substrate constraint of e=0.005 and -0.005 obtained from the phase-field approach (scattered symbols) and from a single-domain assumption (solid lines)………….…..64 Figure 2-53. Domain stability map: domain configuration as a function of substrate constraint and temperature. The two inserts are two-dimensional cross section cuts of the corresponding 3D domain structures obtained from the computer simulations……………………………………………………………….…65 Figure 2-54. (a) SEM image of a 1μm2 island with the top electrode. (b)Effective stress distribution for the 1μm and 200μm capacitors. The inset shows the degree of clamping plotted as a function of the lateral capacitor size for 1μm thick film………………………………………………………………………….66 Figure 2-55. The effect of the movement of ferroelastic domains on the polarization response of a nanostructured island compared to a continuous film………..66 Figure 2-56. Schematic physical model for the strain due to epitaxy and the polarization of the PZT heterostructure shown at the top: (a) stress-free film and substrate couple, (b) increase in the outof- plane and consequent decrease in the in-plane spontaneous strains due to increase in the saturation polarization, (c) strain due to epitaxial matching of the film-substrate couple resulting in a uniform internal stress field in the film, (d) the film cut into stripes along [100] such that D , h resulting in the decrease of the internal stress field and constraint, and (e) Longitudinal piezoelectric coefficient as a function of sweep voltage for a continuous 120 nm thick PNZT thin film on Si substrate compared to a 0.25 x 0.25 μm island delineated from the film……………………………………..67 Figure 2-57. Remnant polarization as function of tensile and compressive stress………..69 Figure 2-58. Polarization hysteresis loops and dielectric properties of the PZT films with and without an applied stress during sputtering…………………….……….70 Figure 2-59. The variation of remnant polarization Pr and spontaneous polarization Ps under tension, positive variation indicates increase and compression, negative variation indicates decrease stress for films of different thickness and the same maximum applied voltage…………………………………………………….71 Figure 2-60. Normalized remnant polarization (Pr /Pr0) and with stress measured at a field of (a) 375 kV/cm for BNT and (b) 465 kV/cm for BLT. Positive and negative values of stress represent tension and compression, respectively. Pro is the remnant polarizationof the films without applied stress……….…………….72 Figure 2-61. (a) Normalized remnant polarization (Pr /Pr0) and with stress for films with different grain sizes, measured at an electric field of around 440 kV/cm. (b) shows the relationship of the change rate (%)with grain size…………….…..73 Figure 2-62. Stress of (a) the PZT film and (b) the SBT film as a function of the switching cycles…………………………………………………………………..……..74 Figure 2-63. Stress evolution of SBLT thin films in the fatigue process…………………..75 Figure 2-64.Fatigue characteristics measured under different stress at 50 kHz fatigue and measuring field are ±274 and 274 kV/cm, respectivelyd for a BLT film with larger grain size about 140 nm………………………………………..………76 Figure 2-65. Fatigue properties of BLT films with average grain size of about 135 nm. The inset shows the improved percentage (%) under stress with grain size after 7x 108 switching cycles…………………………………………….……………76 Chapter 3 Figure 3-1. Schematic diagram of Part І ferroelectric thin film fabrication procedure…….88 Figure 3-2. Schematic diagram of Part Ⅱ ferroelectric thin film fabrication procedure….89 Figure 3-3. Schematic illustration the construction of the bending holder. This holder was employed to provide external constraint to the SBT thin films during their crystallization processing……………………………………………………..90 Figure 3-4. Schematic diagram of PFM setup…………………………………….………..91 Figure 3-5. A schematic of the side-inclination method with the Euler angle…….……….92 Figure 3-6. (a) The XRD data showing that the peak (123) shifts with the varying c angle, (b) The plotting and linear fitting of the values of (di2dn)/dn against sin2 c for the PZT film sample……………………………………………………………….93 Figure 3-7. The electrical circuit of RT66A with Virtual Ground Mode…………………...94 Chapter 4 Figure 4-1. (a) P–E hysteresis loops of SBT thin films deposited on Pt/TiO2/SiO2/Si substrates and crystallized at 750 °C for 60 s through RTA in an oxygen ambient. (b) Remanent polarizations of various compositions as a function of the crystallization time……………………………………………..……...110 Figure 4-2. XRD patterns of the SBT thin films that had been crystallized at 750 °C for (a) 10, (b) 20, (c) 30, and (d) 60 s. The Si peak originated from the silicon substrate………………………………………………………….…………111 Figure 4-3. (a) Intensity ratios (IF(111)/[IB(115) + IF(111)]) of the fluorite phase and (b) texturing ratios (I(200)/[I(115) + I(200)]) of SBT films containing different Ta contents as a function of annealing time………………………………………...………112 Figure 4-4. FESEM planar images of SBT thin films: (a) Ta18, (b) Ta20, and (c) Ta22 annealed at 750 °C for 10 s; (d) Ta18, (e) Ta20, and (f) Ta22 annealed at 750 °C for 30 s…………………………………………………………………113 Figure 4-5.FESEM planar and cross-sectional images of SBT thin films after crystallization at 750 °C for 60 s: (a), (b) Ta18; (c), (d) Ta20; (e), (f) Ta22………….……114 Figure 4-6. Deconvoluted Ta (4f) XPS spectra obtained from the surfaces of SBT samples before [(a) Ta18, (b) Ta20, (c) Ta22] and after [(d) Ta18, (e) Ta20, and (f) Ta22] argon ion sputtering. Each specimen was crystallized at 750 °C for 60 s. Solid lines: experimental data; dashed lines: deconvoluted components; circular symbols: sums of deconvoluted components………………………………115 Figure 4-7. Fatigue characteristics of Ta18, Ta20, and Ta22 samples annealed at 750 °C for 60 s. This test was performed using bipolar pulses of 1 MHz at an amplitude of 250 kV/cm…………………………………………………...116 Figure 4-9. SIMS depth profile of SBT films deposited on top of Ta deficient, stoichiometric, and Ta rich buffer layer, respectively………………..……..118 Figure 4-10. FESEM images of (a) Ta deficient, SrBi2Ta1.8O9, (b) stoichiometric, SrBi2Ta2O9 (c) Ta rich, SrBi2Ta2.2O9, buffer layers; and SBT films on top of (d) Ta deficient, (e) stoichiometric, (f) Ta rich buffer layers, respectively………………………………………………….…….…..……119 Figure 4-11. XRD patterns of (a) 40-nm-thick SrBi2Ta2xO9 buffer layers.(b) SBT films doposited on top of Ta deficient, stoichiometric, and Ta rich buffer layer, respectively…………………………………………………………………120 Figure 4-12. P-E loops of various SBT/buffer capacitors……………………….………121 Figure 4-13. Leakage current densities of various SBT/buffer capacitors……..………..122 Figure 4-14. The fatigue endurances of various SBT/buffer capacitors…………..……..122 Chapter 5 Figure 5-1. (a) XRD patterns of the PZT thin films before (RTA5001s) and after furnace annealing at 650 °C. (b) The (002)/ (200) profiles of the P-F PZTs under various constraint conditions………………………………….……..……..143 Figure 5-2. XRD patterns of the PZT films without pre-crystallization under various constraint conditions during annealing process…………………………….144 Figure 5-3. The dielectric properties of various PZT thin films (a) with (b) without the pre-crystallization then subjected to various stress states during annealing……………………………………………………………….……145 Figure 5-4.FESEM surface images of PZT thin films without pre-crystallization under various constraint conditions during annealing process……………...……..146 Figure 5-5. FESEM surface images of PZT thin films with pre-crystallization under various constraint conditions during annealing process……………………………..147 Figure 5-6. P–E hysteresis loops of various PZT thin films (a) with (b) without the pre-crystallization then subjected to various stress………………………….148 Figure 5-7. Topographic (left) and vertical piezoresponse images (right) of (a)(d) compressive, (b)(e) reference, and (c) (f)tension -constraint P-F PZT films annealed at 650℃…………………………………………………….……..149 Figure 5-8. The fatigue endurances of the pre-crystallization PZT thin films subjected to various stress states…………………………………………….……………150 Figure 5-9. (a) XRD patterns of the 200nm SBT thin films before (RTA7505s) and after furnace annealing at 810 °C. (b) Intensity ratios (Ip(222)/[IBLS(115) + Ip(222)]) of the pyrochlore and BLS phases, plotted as a function of the annealing temperature, for SBT films subjected to various constraint conditions……………………151 Figure 5-10. FESEM surface images of 200nm SBT thin films (a) before furnace annealing and (b–d) after annealing at 810 °C (b) without constraint, (c) with tensile constraint, and (d) with compressive constraint.(e) The volume fractions of nano-grains in SBT, plotted as a function of the annealing temperature, for SBT films subjected to various constraint conditions.……………………………152 Figure 5-11. P–E hysteresis loops of 200nm SBT thin films subjected to various stress states and crystallized at (a) 750, (b) 770, (c) 790, and (d) 810 °C.………..………153 Figure 5-12. (a) Remanent polarizations as functions of the various stress states and the annealing temperatures. (d) P–E hysteresis loops of the 750 reference sample under applied tension and compression.……………………………..……..154 Figure 5-13. Topographic (left) and piezoresponse images (middle: out of plane, right: in plane) of 200nm (a) tension and (b) compressive-constraint SBT films annealed at 750℃……………………………………………………..……155 Figure 5-14. Topographic (left) and piezoresponse images (middle: out of plane, right: in plane) of 200nm (a) tension and (b) compressive-constraint SBT films annealed at 790℃…………………………………………………….….…156 Figure 5-15. Normalized remnant polarization values (Pr /Pr0) of different thickness of SBT films annealed at 750 or 790℃ under various stresses…………………….157 Figure 5-16. XRD patterns of different thickness SBT thin films after furnace annealing at 790 °C under various stresses………………………………………………158 Figure 5-17. Intensity ratios (Ip(222)/[IBLS(115) + Ip(222)]) of the pyrochlore and BLS phases, plotted as a function of the stress conditions, for different thickness SBT films…………………………………………………………………..…..…159. Figure 5-18. The XPS spectra of the Bi 4f core levels, plotted as a function of the stress conditions, for different thickness SBT films………………………………160 Figure 5-19. FESEM surface images of 200nm ((a) compressive, (b) reference, and (c) tensile), and 600nm ((d) compressive, (e) reference, (f) tensile) thick SBT thin films after annealing at 790 °C………………………………………….…..161

    Reference
    1. C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, and J.F. Scott, Nature (London), 374, 627 (1995).
    2. A.D. Li, D. Wu, H.Q. Ling, T. Yu, M. Wang, X.B. Yin, Z.G.Liu, N.B. Ming, J. Appl. Phys., 88, 1035 (2000).
    3. R. Dat, J.K. Lee, O. Auciello, A.I. Kingon, Appl. Phys. Lett., 67, 572 (1995).
    4. N.J. Seony, C.H. Yang, W.C. Shin, S.G. Yoon, Appl. Phys.Lett., 72, 1374 (1998).
    5. R.W. Vest, Ferroelectrics, 102, 53 (1990).
    6. K. Franke ,G. Matin , M. Weihnacht, and A. V. Sotnikov, Sol. Sta. Comm., 119, 117 (2001).
    7. A.C. Rastogi, S. Tirumala, and S.B. Desu, Appl. Phys. Lett., 74, 3492 (1999).
    8. Y.P. Wang, Y.X. Zhang, T. Zhu and Z.G. Liu, Scripta mater., 44, 2563 (2001).
    9. G. Gonzalez Aguilar, A. Wu, M.A. Reis, A.R. Ramos , I.M. Mirand Salvado , E. Alves , and M.E.V. Costa, Surf. Sci., 600, 1780 (2006).
    10. H. Amorın , A.L. Kholkin, and M.E.V. Costa, J. Eur. Ceram. Soc., 25, 2453 (2005).
    11. G.G. Aguilar, M.E.V. Costa, and I.M. Miranda Salvado, J. Eur. Ceram. Soc., 25, 2331 (2005).
    12. R. Ramesh, J. Lee, T. Sands, V.G. Keramidas, and O. Auciello, Appl. Phys. Let ., 64, 2511 (1994).
    13. T. Hayashi, H. Takahashi, T. Hara, Jpn. J. Appl. Phys., 35, 4952 (1996).
    14. S.-Y. Jung, S.-J. Hwang, and Y.-M. Sung, J. Mater. Res., 18, 1745 (2003).
    15. Y.-M. Sung, G. M. Anilkumar, and S.-J. Hwang, J. Mater. Res., 18, 387 (2003).
    16. T. Matsuki, Y. Hayashi, and T. Kunio, IEDM, 96, 691 (1996).
    17. T. Atsuki, N. Soyama, T. Yonezawa, and K. Ogi, Jpn. J. Appl. Phys., 34, 5096 (1995).
    18. K. Miura and M. Tanaka, Jpn. J. Appl. Phys., 37, 2554 (1998).
    19. T. Noguchi, T. Hase, and Y. Miyasaka, Jpn. J. Appl. Phys., 35, 4900 (1996).
    20. Y. Shimakawa, Y.Kubo, Y. Nakagowa, T.Kamiyama, H.Asano, F. Izumi, Appl. Phys. Lett., 74, 1904 (1999).
    21. S.-Y.Chen and V.-C. Lee, J. Appl. Phys., 87, 8024 (2000).
    22. T. Hase, T. Noguchi, K. Amanuma, and Y. Miyasaka, Integr. Ferroelectr., 15, 127 (1997).
    23. T. A. Derouin, C.D.E. Lakeman, X.H. Wu, J.S. Speak, and F.F. Lange, J. Mater. Res., 12, 1391 (1997).
    24. Y.H. Xu, C.H. Cheng, Y.D. Lou, and J.D. Mackenzie, Ferroelectrics, 195, 283 (1998).
    25. W.-C. Shin and S.-G. Yoon, Appl. Phys. Lett., 79, 1519 (2001).
    26. C.C. Leu, C.H. Chien, M.J. Yang, M.C. Yang, T.Y. Huang, H.T. Lin, and C.T. Hu, Appl. Phys. Lett., 80, 4600 (2002).
    27. D. Miu, J.C. Martinez, L. Wiehl, R. Raitieri, and H. Adrian, Mater. Lett., 59, 1243 (2005).
    28. C.C. Leu, C.H. Chien, F.Y. Hsu, H.T. Lin, and C.T. Hu, J. Electrochem. Soc. , 151, F167 (2004).
    29. J. F. Scott and C. A. Paz de Araujo, Science, 246, 1400 (1989).
    30. S.M. Spearing, Acta Mater., 48, 179 (2000).
    31. T.J. Garino and M. Harrington, Mater. Res. Soc. Symp. Proc., 243, 341 (1992).
    32. B.A. Tuttle, J.A. Voigt, T.J. Garino, D.C. Goodnow, R.W. Schwartz, D.L. Lamppa, T.J. Headley, and M.O. Eatough, in Proceedings of the IEEE 8th International Symposium on Applied Ferroelectrics, p. 344, (IEEE, New York, 1992).
    33. G.A.C.M. Spierings, G.J.M. Dormans, W.G.J. Moors, M.J.E. Ulenaers, and P.K. Larsen, J. Appl. Phys., 78, 1926 (1995).
    34. S.S. Sengupta, S.M. Park, D.A. Payne, and L.H. Allen, J. Appl. Phys., 83, 2291 (1998).
    35. K. Morito and T. Suzuki, J. Appl. Phys., 97, 104107 (2005).
    36. C.D.E. Lakeman, J.A. Ruffner, and T.J. Boyle, J. Sol-Gel Sci. Technol., 16, 83 (1999).
    37. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science, 299, 1719 (2003).
    38. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L.Q. Chen, D.G. Schlom, C.B. Eom, Science, 306, 1005 (2004).
    39. T. Kumazawa, Y. Kumagai, H. Miura, M. Kitano, and K. Kushida, Appl. Phys. Lett., 72, 608 (1998).
    40. J.-W. Lee, G.-T. Park, C.-S. Park, and H.-E. Kim, Appl. Phys. Lett., 88, 072908 (2006).
    41. X. Lu, J. Zhu, X. Li, Z. Zhang, X. Zhang, D. Wu, F. Yan, Y. Ding, and Y. Wang, Appl. Phys. Lett., 76, 3103 (2000).
    42. X. Wu, X. Lu, Y. Kan, F. Huang, J. Ma, and J. Zhu, Appl. Phys. Lett., 89, 122910 (2006).
    43. N. Fujimura, S. Tachibana, T. Ito, and N. Hosokawa, J. Appl. Phys., 73, 733 (1993).
    44. H. Ohigashi, K. Omote, and T. Gomyo, Appl. Phys. Lett., 66, 3281 (1995).
    45. S. Hazra, I. Sakata, M. Yamanaka, and E. Suzuki, Appl. Phys. Lett., 80, 4115 (2002).
    46. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric ceramics, (Academic Press, New York, 1971), p. 50.
    47. C.S. Lynch, Acta mater., 44, 4137 (1996).
    48. B. K. Moon, K. Hironaka, C. Isobe, and S. Hishikawa, J. Appl. Phys., 89, 6370 (2001).
    49. E.S. Kim and R.S. Muller, IEEE Electron Device Lett.,EDL 7, 254 (1987).
    50. S.W. Wenzel and R.M. White, IEEE Trans. Electron Devices., ED-35, 735 (1988).
    51. D.L. Polla, R.S. Muller, and R.M. White, IEEE Electron Device Lett., EDL-7, 254 (1986).
    52. R.M. Morney, R.M. White, and R.T. Howe, Proceedings of the IEEE Ultrasonics Symposium, Montreal, 745 (1989).
    53. D. Bondurant and F. Gnadinger, IEEE Spectrum., 26, 30 (1989).
    54. M.H. Frey and D.A. Payne, Appl. Phys. Lett., 63, 2753 (1993).
    55. B. Jaffe, W.R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London), 136 (1971).
    56. X. Du, J. Zheng, U. Belegundu, and K. Uchino, Appl. Phys. Lett., 72, 2421 (1998).
    57. A. Boutarfaia, C. Boudaren, A. Mousser , and S.E. Bouaoud, Ceramics International., 21 , 391 (1995).
    58. S. Yokoyama, Y. Honda, H. Morioka, G. Asano, T. Oikawa, T. Iijima, H. Matsuda and H. Funakubo, Jpn. J. Appl. Phys., 42, 5922 (2003).
    59. H. Morioka, S. Yokoyama, T. Oikawa, H. Funakubo, and K. Saito, Appl. Phys. Lett., 85, 3516 (2004).
    60. A. Ari-gur and L. Benguigui, Solid State Commun., 15, 1077 (1974).
    61. A. Ari-gur and L. Benguigui, J. Phys. D., 8, 1856 (1975).
    62. K. Kakegawa, J. Mohri, K. Takahasi, H. Yamamura, and S. Shirasaki, Solid State Commun., 24, 769 (1977).
    63. K. Kakegawa, J. Mohri, S. Shirasaki, and K. Takahashi, J. Am. Ceram. Soc., 65, 515 (1982).
    64. A.P. Singh, S.K. Mishra, D. Pandey, C.D. Prasad, and R. Lal, J. Mater. Sci., 28, 5050 (1993).
    65. A.P. Singh, S.K. Mishra, R. Lal, and D. Pandey, Ferroelectrics, 163, 103 (1995).
    66. K. Kakegawa, O. Matsunaga, T. Kato, and Y. Sasaki, J. Am. Ceram.Soc., 78, 1071 (1995).
    67. J.C. Fernandes, D.A. Hall, M.R. Cockburn, and G.N. Greaves, Phys. Res. B., 97, 137 (1995).
    68. E.R. Leite, M. Cequeira, L.A. Perzaoli, R.S. Nasar, E. Longo, and J.A. Varela, J. Am. Ceram. Soc., 79, 1563 (1996).
    69. A. P. Wilkinson, J. Xu, S. Pattanaik, and S.J.L. Billinge, Chem. Mater., 10, 3611 (1998).
    70. M. Hammer, C. Monty, A. Endriss, and M.J. Hoffmann, J. Am. Ceram. Soc., 81, 721 (1998).
    71. W. Cao and L.E. Cross, Phys. Rev. B., 47, 4825 (1993).
    72. Ragini, R. Ranjan, S.K. Mishra, and D. Pandey, J. Appl. Phys., 92, 3266 (2002).
    73. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, and S.-E. Park, Appl. Phys. Lett., 74, 2059 (1999).
    74. B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox, and G. Shirane, Phys. Rev. B., 61, 8687 (2000).
    75. R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, and G. Shirane, Phys. Rev. Lett., 84, 5423 (2000).
    76. L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. Lett., 84, 5427 (2000).
    77. B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, and L.E. Cross, Phys. Rev. B., 63, 014103 (2001).
    78. D.E. Cox, B. Noheda, and G. Shirane, Y. Uesu, K. Fujishiro, and Y. Yamada, Appl. Phys. Lett., 79, 400 (2001).
    79. A. Bouzid, E.M. Bourim, M. Gabbay, G. Fantozzi, Journal of the European Ceramic Society, 25,3213 (2005).
    80. H. Cao, B. Fang, H. Xu, and H. Luo, Mater. Res. Bull. 37, 2135 (2002).
    81. W. Gong, J.-F. Li, X. Chu, Z. Gui, and L. Li, J. Appl. Phys., 96, 590 (2004).
    82. T. Oikawa, M. Aratani, and H. Funakubo, K. Saito and M. Mizuhira, J. Appl. Phys., 95, 3111 (2004).
    83. H. Funakubo, K. Tokita, T. Oikawa, M. Aratani, and K. Saito, J. Appl. Phys., 92, 5448 (2002).
    84. G.A. Smolenskii, V.A. Isupov, and A.I. Agranovskaya, Sov. Phys. Solid St., 3, 651 (1961).
    85. E.C. Subbarao, J. Phys. Chem. Solids,,23, 665 (1962).
    86. B.H. Park, S.J. Hyun, S.D. Bu, T.W. Noh, J. Lee, H.-D. Kim, T.H. Kim, and W. Jo, Appl. Phys. Lett. 74, 1907 (1999).
    87. D. Ravichandran, K. Yamakawa, A.S. Bhalla, and R. Roy, Journal of Sol-Gel Science and technology, 9, 95 (1997).
    88. N. Fujimura, D.T. Thomas, S.K. Streiffer, and A.I. Kingon, Jpn. J. Appl. Phys. 37, 5185 (1998).
    89. R.E. Newham, R.W. Wolfe, R.S. Horsey, F.A. Diaz-Colon and M.I. Kay, Mater. Res. Bull., 8, 1183 (1973).
    90. A.D. Rae, J.G. Thompson and R.L. Withers, Acta Crystallogr. B48 , 418 (1992).
    91. J.H. Choi, J.Y. Lee, and Y.T. Kim, Appl. Phys. Lett., 74, 2933 (1999).
    92. W. Hartner, Ph. D thesis: Formation and Characterization of SrBi2Ta2O9 (SBT) Thin Film Capacitor Module with Platinum/Titanium Bottom and Platinum Top Electrodes (2003).
    93. M.A. Rodriguez, T.J. Boyle, C.D. Buchheit, R.G. Tissot, C.A. Drewien, B.A. Hernandez, and M.O. Eathough, Integrated Ferroelectrics, 14, 201 (1997).
    94. T. Osaka, A. Sakakibara, T. Seki, S. Ono, I. Koiwa, and A. Hashimoto, Jpn J. Appl. Phys. 37, 597 (1998).
    95. I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, and M.Maeda, Jpn. J. Appl. Phys., 35, 4946 (1996).
    96. K. Amanuma, T. Hase and Y. Miyasaka, Appl. Phys. Lett., 66, 221 (1995).
    97. J.F. Scott, IEICE Trans. Electron., E81-C(4), 477 (1998).
    98. O. Auciello, J.F. Scott, and R. Ramesh, Phys. Today, 22 (1998).
    99. C.D. Gutleben, Mater. Res. Soc. Symp. Proc. 433, 109 (1996).
    100. J.S. Lee, H.J. Kwon, Y.W. Jeong, H.H. Kim, S.J. Hyun and T.W. Noh, Appl. Phys. Lett., 74 ,2690 (1999).
    101. A.J. Hartman, R.N. Lamb, J.F. Scott, P.N. Johnston, M. El Bouanani, C.W. Chen, and J. Robertson, Journal of the Korean Physical Society, 132, S1329 (1998).
    102. C.-H. Lu, B.-K. Fang and C.-Y. Wen, Jpn. J. Appl. Phys., 39, 5573 (2000).
    103. Z.G. Zhang, J.S. Liu, Y.N. Wang, J.S. Zhu, J.L. Liu, D. Sul, and H.M. Shen, J. Appl. Phys. 85, 1746 (1999).
    104. M.A. Rodriguez, T.J. Boyle, B.A. Hernandez, C.D. Buchheit, and M.O. Eatough, J. Mater. Res , 11, 2282 (1996).
    105. T-C.Chen, T. Li , X. Zhang , and S.B. Desu , J. Mater.Res., 12, 1569 (1997).
    106. P. Tejedor, C. Ocal,E. barrena , R. Jimenez, C. Alemany, and J. Mendiola, Appl. Sur. Sci. , 175,759 (2001).
    107. H. Watanabe, T. Mihara, H. Yosgimori , and C.A.P. de Araujo, Jpn. J. Appl. Phys., 34, 5240 (1995).
    108. K. Watanabe, M. Tanaka, E. Sumitomo, K. Katori, H. Yagi, and J.F. Scott, Appl. Phys. Lett., 73, 126 (1998).
    109. S. Bhattacharyya, A. Laha, and S.B. Krupanidhi, J. Appl. Phys., 92, 1056 (2002).
    110. J.-J. Choi, C.-S. Park, G.-T. Park, and H.-E. Kim, Appl. Phys. Lett., 85, 4621 (2004).
    111. E.M. Alkoy, K. Uchiyama, and T. Shiosaki, and S. Alkoy, J. Appl. Phys., 99, 106106 (2006).
    112. A. Wu, I.M.M. Salvado, P.M. Vilarinho, and J.L. Baptista, J. Eur. Ceram. Soc, 17, 1443 (1997).
    113. K.H. Yoon, H.C. Shin, and J. Park, D.H. Kang, J. Appl. Phys., 92, 2108 (2002).
    114. H.J. Jung and T.S. Kim, J. Appl. Phys., 79, 9245 (1996).
    115. Y.L. Li, S. Choudhury, Z.K. Liu, and L.Q. Chen, Appl. Phys. Lett., 83, 1608 (2003).
    116. J. Lappalainen, J. Frantti, and V. Lantto, J. Appl. Phys. 82, 3469 (1997).
    117. Berfield et al. J. Appl. Phys., 101, 024102 (2007).
    118. L. Lian and N.R. Sottos, J. Appl. Phys. 87, 3941 (2000).
    119. G.A. Rossetti, Jr., L.E. Cross, and K. Kushida, Appl. Phys. Lett., 59, 2524 (1991).
    120. K.R. Udayakumar, P.J. Schuele, J. Chen, S.B. Krupanidhi, and L.E. Cross, J. Appl. Phys., 77, 3981 (1995).
    121. X. Wu, X. Lu, A. Chen, Y. Yin, J. Ma, W. Li, Y. Kan, D. Qian, and J. Zhu, Appl. Phys. Lett., 86, 092904 (2005).
    122. S.H. Oh and H.M. Jang, Appl. Phys. Lett., 72, 1457 (1998).
    123. S.H. Oh and H.M. Jang, Phys. Rev., 62,14757 (2000).
    124. J.S. Speck and W. Pompe, J. Appl. Phys., 76, 466 (1994).
    125. S.P. Alpay and A.L. Roytburd, J. Appl. Phys., 83, 4714 (1998).
    126. N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Phys. Rev. Lett., 80, 1988 (1998).
    127. V.G. Koukhar, N.A. Pertsev, and R. Waser, Phys. Rev., 64, 214103 (2001).
    128. Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen, Appl. Phys. Lett., 78, 3878 (2001).
    129. L. Yan, J. Li, H. Cao, and D. Viehland, Appl. Phys. Lett., 89, 262905 (2005).
    130. B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, and S.E. Park, Appl. Phys. Lett., 74, 2059 (1999).
    131. N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Phys. Rev. Lett., 80, 1988 (1998).
    132. Z.G. Ban and S.P. Alpay, J. Appl. Phys., 93, 504 (2003).
    133. G. Xu, H. Hiraka, G. Shirane, J. Li, J. Wang, and D. Viehland, Appl. Phys. Lett., 86, 182905 (2005).
    134. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science, 299, 1719 (2003).
    135. Y.L. Li, S.Y. Hu, Z.K. Liu, and L.Q. Chen, Appl. Phys. Lett., 78, 3878 (2001).
    136. Y.L. Li, S.Y. Hu, and L.Q. Chen, J. Appl. Phys., 97, 034112 (2005).
    137. V. Nagarajan, A. Roytburd, A. Stanishevsky, S. Prasertchoung, T. Zhao, L. Chen, J. Melngailis, O. Auciello and R. Ramesh, Nature Materials, 2, 43 (2003).
    138. A.L. Roytburd, S.P. Alpay, V. Nagarajan, C.S. Ganpule, and S. Aggarwal, E.D. Williams, R. Ramesh, Phys. Rev. Lett., 85, p.190 (2001).
    139. S.Y. Kweon, S.H. Yi, and S.K. Choi, J. Vac. Sci. Technol. A, 15, 57 (1997).
    140. S.B. Desu, Phys. Status Solidi A, 141, 119 (1994).
    141. J.-K. Lee, C.-H. Kim, H.-S. Suh, and K.-S. Hong, Appl. Phys. Lett., 80, 3593 (2002).
    142. K. Khachatutyan, J. Appl. Phys. 77, 6449 (1995).
    143. J.S. Liu, S.R. Zhang, L.S. Dai, and Y. Yuan, J. Appl. Phys., 97, 104102 (2005).
    144. J.S. Liu, S.R. Zhang, and H.Z. Zeng, W.D. Fei and S.Y. Du , J. Appl. Phys., 99, 094103 (2006).
    145. M.B. Kelman, P.C. McIntyre, B.C. Hendrix, S.M. Bilodeau, and J.F. Roeder, J. Appl. Phys., 93, 9231 (2003).
    146. 呂奕賢, Master thesis: Nanoscale Characterization of Bismuth Ferrite Films by Scanning Probe Microscopy (2005).
    147. X. Zheng, J. Li, Y. Zhou, Acta Materialia, 52, 3313 (2004).
    148.http://web.nchu.edu.tw/~weite/chi/chi-l/input-l02/MyWebs/stressintroduction.htm
    149. K. Yao, S. Yu, and F.E.-H. Tay, Appl. Phys. Lett., 82, 4540 (2003).
    150. X.J. Zheng, Z.Y. Yang, Y.C. Zhou, Scripta Materialia, 49, 71 (2003).
    151. S.B. Ren, C.J. Lu, H.M. Shen, and Y.N.Wang, Phys. Rev. B, 55, 3485 (1997).
    152. W.C. Kwak and Y-M. Sung, J. Mater. Res., 17, 1463 (2002).
    153. C.M. Palanduz and D.M. Smyth, J. Eur. Ceram. Soc., 19, 731 (1999).
    154. S.Y. Chen, B.C. Lan, and C.S. Taso, J. Appl. Phys., 91, 10032 (2002).
    155. S.H. Kim, D.J. Kim, J.P. Maria, A.I. Kingon ,S.K. Streiffer, J. Im, O. Auciello, and A.R. Krauss, Appl. Phys. Lett., 76, 496 (2000).
    156. R. Bungener, W. Pamler, and U. Gosele, Mater. Sci. Semi. Proce. , 6, 43 (2003).
    157. Q. Tan, J. Li, and D. Viehland, Appl. Phys. Lett., 75, 418 (1999).
    158. D. Viehland and Y.H. Chen, J. Appl. Phys., 88, 6696 (2000).
    159. D.A. Shirley, Phys. Rev. B, 5, 4709 (1972).
    160. J.H. Thomas III and L.H. Hammer, J. Electrochem. Soc., 136, 2004 (1989).
    161. S. Hofman and J.M. Sanz, J. Trace Microprobe Tech., 1, 213 (1982).
    162. G.L. Yuan, J.-M. Liu, Y.P. Wang, D.Wu, S.T. Zhang, Q.Y. Shao, and Z.G. Liu, Appl. Phys. Lett., 76, 2208 (2000).
    163. D. Wu, A. Li , H. Ling, T. Yu, Z. Liu, and N. Ming, Appl. Phys. Lett., 84, 3352 (2004).
    164. J. Robertson, C.W. Chen, W.L. Warren, and C.D. Gutleben, Appl. Phys. Lett.,69, 1704 (1996).
    165. M. Moert, G. Schindler, T. Mikolajick, N. Nagel, W. Hartner, C. Dehm, H. Kohlstedt, and R. Waser, Appl. Surf. Sci., 249, 23 (2005).
    166. R. Bruchhaus, D. Pitzer, R. Primig, M. Schreiter, and W. Wersing, Integrated Ferroelectrics, 21, 461 (1998).
    167. Y. Okada and Y. Tokumaru, J. Appl. Phys., 56, 314 (1984).
    168. F. Yan, X. Chen, P. Bao, Y. Wang, and J. Liu, J. Appl. Phys., 87, 1453 (2000).
    169. X. Zhu, J. Zhu, S. Zhou, Q. Li, Z. Liu, and N. Ming, Appl. Phys. Lett., 79, 1345 (2001).
    170. K. Babooram and Z.-G. Ye, Chem. Mater., 18, 532 (2006).
    171. I. Koiwa, T. Kanehara, J. Mita, T. Iwabuchi, T. Osaka, S. Ono, and M.Maeda, Jpn. J. Appl. Phys. 35, 4946 (1996).
    172. H. Bachhofer, H. von Philipsborn , W. Hartner ,C. Dehm , B. Jobst, A. Kiendl, H. Schroeder and R. Waser, J. Mater. Res., 16, 2966 (2001).
    173. Y.P. Wang, H.F. Ning, L. Zhou, J.K. Shen, and Z.G. Liu, Appl. Phys. Lett., 83, 743 (2003).
    174. C.C. Leu, M.C. Yang, C.T. Hu, C.H. Chien, M.J. Yang, and T.Y. Huang, Appl. Phys. Lett., 79 , 3833 (2001).
    175. R. Waser, U. Böttger, and M. Grossmann: Ferroelectric Random Access Memories, Topics Appl. Phys., 93, 31 (2004).
    176. S. Yokoyama, Y. Honda, H. Morioka, S. Okamoto, H. Funakubo, T. Iijima, H. Matsuda, K. Saito, T. Yamamoto, H. Okino, O. Sakata, and S. Kimura, J. Appl. Phys., 98, 094106 (2005).
    177. A.Q. Jiang, J.F. Scott, M. Dawber, and C. Wang, J. Appl. Phys., 92, 6756 (2002).
    178. H.M. Duiker, P.D. Beale, J.F. Scott, C.A. Araujo, B.M. Melnick, J.D. Cuchiaro, and L.D. McMillan, J. Appl. Phys., 68, 5783 (1990).
    179. M. Dawber and J.F. Scott, Appl. Phys. Lett., 76, 1060 (2000).
    180. J.F. Scott and M. Dawber, Appl. Phys. Lett., 76, 3801 (2000).
    181. A.K. Tagantsev, I. Stdichnov, E.L. Colla, and N. Setter, J. Appl. Phys. 90, 1387 (2001).
    182. G.D. Hu, J.B. Xu, and I.H. Wilson, Appl. Phys. Lett., 75, 1610 (1999).
    183. G. Arlt and N.A. Pertsev, J. Appl. Phys. 70, 2283 (1990).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE