研究生: |
陳育良 Chen, Yu-Liang |
---|---|
論文名稱: |
以機械合金法探討高熵合金熱動力學之行為 Study on the Thermodynamics and Kinetics of High-entropy Alloys under Mechanical Alloying |
指導教授: |
葉均蔚
Yeh, Jien-Wei 陳瑞凱 Chen, Swe-Kai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 200 |
中文關鍵詞: | 高熵合金 、機械合金 、熱力學 、動力學 |
外文關鍵詞: | high-entropy alloys, mechanical alloying, thermodynamics, kinetics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用機械合金法來探討高熵合金的熱動力學行為。首先,利用機械合金法配置CuNiAlCoCrFeTiMo二元至八元合金,觀察在球磨過程中,合金粉末的結構變化。研究結果發現,在機械合金化的過程中元素之間有互相競爭的現象,有先後不同的合金化順序,藉由分析二至八元合金的XRD及EDS mapping,可以判斷出此合金系統中各元素的合金化順序為Al → Cu → Co → Ni → Fe → Ti → Cr → Mo。此外,配置反向元素添加順序的二至七元合金加以驗證,也確認相同的合金化順序。由冶金因素的探討,發現此順序跟元素熔點有很高的相關性,因為熔點關係到元素是否容易被延展破碎及分散,亦關係到擴散速率的快慢。
在相轉變方面,此系列合金的機械合金化與熔煉法製備的高熵合金一樣,會形成BCC和FCC的固溶相。屬傳統合金的二元和三元合金,即使經過六十小時的球磨仍維持結晶態;但四元至八元合金經過球磨先形成結晶固溶相而後再形成非晶相,其中八元合金則有Mo元素殘留。此一非晶化過程屬於Weeber和Bakker依二元合金觀察所歸納的第一類非晶化。此第一類非晶化的原因經探討乃由於元素數目增加、原子尺寸差及機械合金引入的大量變形效應所共同作用的結果。
將四至七元合金所得的非晶粉末作熱分析加熱及不同溫度退火,觀察穩定相的形成,並和熔煉法所得相結構作比較。結果顯示所有非晶粉末在100°C時開始有回復的現象,約250至280°C發生結晶化,在更高的溫度有第二相析出及晶粒成長發生。由於穩定態下的相仍為固溶相,所以再次肯定先前所提高熵促進固溶相的效應。對於非晶化的準則,發現Egami的準則可以延伸至高熵合金,得到合理的預測及解釋。然而,此些非晶合金升溫下並未呈現玻璃轉換溫度,證明Inoue 12%的尺寸差異仍是玻璃轉換溫度存在的必要條件。
除八元合金系統外,本研究亦利用機械合金法配置一組完全由HCP元素所組成的合金系統BeCoMgTi和BeCoMgTiZn,觀察是否和其他高熵合金一樣容易形成BCC或FCC的固溶相。結果顯示,此HCP合金系統在完全非晶化之前,並不會形成任何的結晶態固溶相或介金屬化合物,而屬於Weeber和Bakker所提出的第二類非晶化,亦即機械合金直接形成的是非晶固溶相。此迥異於前述八元系統的第一類非晶化。經探討發現介金屬化合物的抑制係由於元素間化學的適合性、高熵效應與球磨變形效應促進互溶的作用。而直接形成非晶固溶相乃由於此HCP合金系統具有比八元合金系統更大的原子尺寸差。
In this thesis, we investigate the thermodynamic and kinetic behaviors of high-entropy alloys via mechanical alloying. At first, a series of Cu-Ni-Al-Co-Cr-Fe-Ti-Mo alloys from binary to octonary one were prepared to examine the structure evolution during mechanical alloying process. Results reveal the alloying competition between elements during mechanical alloying. That is, not all the elements are alloyed at the same time but in a specific sequence. By examining the XRD patterns and EDS mapping images of the binary to octonary alloys the alloying sequence of this octonary alloy system is determined as Al → Cu → Co → Ni → Fe → Ti → Cr → Mo. This alloying sequence is also confirmed by another series of alloys with inverse element adding sequence. The alloying rate correlates best with the melting point among metallurgical factors. The mechanism for this correlation is explained through the effect of melting point on solid-state diffusion rate and mechanical disintegration which are both critical for the final alloying.
As for the phase evolution, these alloys prepared by mechanical alloying also form BCC and FCC solid solution phases as that prepared by melting route. However, the binary and ternary alloys still remain crystalline structure even after milling for 60 h. The quaternary to octonary alloys finally transformed into amorphous structure after sufficient milling times. Only the octonary one has residual Mo after milling for 60 h due to its high melting point. The amorphization of these alloys is belong to type I as classified by Weeber and Bakker. The reasons include the increased number of elements, atomic size difference, and the continued lattice distortion imposed by milling.
The amorphous quaternary to septenary alloy powders were further examined by thermal analysis and with annealing to observe the phase transformation during heating. It shows that recovery begins at 100°C, crystallization occurs in the range of 250 to 280°C, new phase forms or grain growth occurs at even higher temperatures. Simple phases are found to exist in the equilibrium state. This confirms again that high entropy effect enhances the formation of solid solution phases. However, glass transition temperature as that found in bulk amorphous alloys is not observed for the present amorphous alloys. Egami’s criterion for amorphization based on topological instability concept can also be applied to high-entropy alloys to explain the amorphization tendency. However, even larger size difference as that required by Inoue’s rule is still crucial to the existence of glass transition temperature.
Furthermore, two equimolar alloys entirely composed of HCP elements were also prepared by mechanical alloying to investigate if they are also easy to form solid solution phases. However, no crystalline solid solutions and compounds form before full amorphization. The amorphization processes of these two alloys thus conform to type II. The inhibition of intermetallic compounds before amorphization is due to chemical compatibility among the constituent elements in company with high entropy effect and deformation effect which enhance the mutual solubility. Direct formation of the amorphous solid solution phase instead of the crystalline one attributes to their large range of atomic size.
1. V. F. Freitas, H. L. C. Grande, S. N. de Medeiros, I. A. Santos, L. F. Cotica, and A. A. Coelho, "Structural, microstructural and magnetic investigations in high-energy ball milled BiFeO3 and Bi0.95Eu0.05FeO3 powders," J. Alloys Compd., Vol. 461 (2008), pp. 48-52.
2. T. Mousavi, F. Karimzadeh, M. H. Abbasi, and M. H. Enayati, "Investigation of Ni nanocrystallization and the effect of Al2O3 addition by high-energy ball milling," J. Mater. Process. Technol., Vol. 204 (2008), pp. 125-129.
3. C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, "Preparation of amorphous Ni60Nb40 by mechanical alloying," Appl. Phys. Lett., Vol. 43 (1983), pp. 1017-1019.
4. P. Y. Lee, M. C. Kao, C. K. Lin, and J. C. Huang, "Mg-Y-Cu bulk metallic glass prepared by mechanical alloying and vacuum hot-pressing," Intermetallics, Vol. 14 (2006), pp. 994-999.
5. S. Hong, C. Kim, and J. Kim, "Magnetic and structural properties of nitrified FINEMET powder using mechanical milling method," Current Applied Physics, Vol. 8 (2008), pp. 787-789.
6. Y. Kimishima, M. Uehara, K. Irie, S. Ishihara, T. Yamaguchi, M. Saitoh, K. Kimoto, and Y. Matsui, "Production of bulk dilute ferromagnetic semiconductor by mechanical milling," J. Magn. Magn. Mater., Vol. 320 (2008), pp. E674-E677.
7. C. Suryanarayana, "Mechanical alloying and milling," Prog. Mater Sci., Vol. 46 (2001), pp. 1-184.
8. J. S. Benjamin, "Dispersion strengthened super alloys by mechanical alloying," Metall. Trans., Vol. (1970), pp. 2943-2951.
9. J. S. Benjamin, "Mechanical alloying," Scientific American, Vol. 234 (1976), pp. 40-49.
10. J. S. Benjamin, "Mechanical alloying," Powder Metallurgy International, Vol. 12 (1980), pp. 43-43.
11. J. S. Benjamin and R. D. Schelleng, "Dispersion strengthened aluminum-4 pct magnesium alloy made by mechanical alloying," Metallurgical Transactions a-Physical Metallurgy and Materials Science, Vol. 12 (1981), pp. 1827-1832.
12. J. S. Benjamin, "Application of mechanically alloyed super-alloys," Journal of Metals, Vol. 35 (1983), pp. A37-A37.
13. C. Suryanarayana, E. Ivanov, and V. V. Boldyrev, "The science and technology of mechanical alloying," Mater. Sci. Eng., A, Vol. 304 (2001), pp. 151-158.
14. K. Saksl, D. Vojtech, and J. Durisin, "In situ XRD studies on Al-Ni and Al-Ni-Sr alloys prepared by rapid solidification," J. Alloys Compd., Vol. 464 (2008), pp. 95-100.
15. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, "Solidification microstructures and solid-state parallels: Recent developments, future directions," Acta Mater., Vol. 57 (2009), pp. 941-971.
16. P. K. Chu, S. Qin, C. Chan, N. W. Cheung, and L. A. Larson, "Plasma immersion ion implantation - A fledgling technique for semiconductor processing," Materials Science & Engineering R-Reports, Vol. 17 (1996), pp. 207-280.
17. J. Pelletier and A. Anders, "Plasma-blased ion implantation and deposition: A review of physics, technology, and applications," Ieee Transactions on Plasma Science, Vol. 33 (2005), pp. 1944-1959.
18. R. Philippe, A. Moranqais, M. Corrias, B. Caussat, Y. Kihn, P. Kalck, D. Plee, P. Gaillard, D. Bernard, and P. Serp, "Catalytic production of carbon nanotubes by fluidized-bed CVD," Chem. Vap. Deposition, Vol. 13 (2007), pp. 447-457.
19. J. Achard, F. Silva, A. Tallaire, X. Bonnin, G. Lombardi, K. Hassouni, and A. Gicquel, "High quality MPACVD diamond single crystal growth: high microwave power density regime," J. Phys. D - Appl. Phys., Vol. 40 (2007), pp. 6175-6188.
20. D. L. Zhang, "Processing of advanced materials using high-energy mechanical milling," Prog. Mater Sci., Vol. 49 (2004), pp. 537-560.
21. B. S. Murty and S. Ranganathan, "Novel materials synthesis by mechanical alloying/milling," Int. Mater. Rev., Vol. 43 (1998), pp. 101-141.
22. C. C. Koch and J. D. Whittenberger, "Mechanical milling/alloying of intermetallics," Intermetallics, Vol. 4 (1996), pp. 339-355.
23. E. Hellstern, H. J. Fecht, Z. Fu, and W. L. Johnson, J. Appl. Phys., Vol. 65 (1989), p. 305.
24. R. E. Reed-Hill, Physical Metallurgy Principles, 3rd ed., PWS-Kent Publishing Company, Boston, 1992.
25. L. Schultz, "Formation of amorphous metals by solid-state reactions," Philos. Mag. B, Vol. 61 (1990), pp. 453-471.
26. A. E. Ermakov, E. E. Yurchikov, and V. A. Barinov, Phys. Met. Metallogr., Vol. 52 (1981), pp. 50-58.
27. A. W. Weeber and H. Bakker, "Amorphization by Ball Milling - a Review," Physica B, Vol. 153 (1988), pp. 93-135.
28. C. Politis, Physica B, Vol. 135 (1985), p. 286.
29. F. Petzoldt, Proc. Conf. Solid State Amorphizing Transformations, (1987).
30. A. W. Weeber, A. J. H. Wester, W. J. Haag, and H. Bakker, Physica B, Vol. 145 (1987), p. 349.
31. M. Seidel, J. Eckert, and L. Schultz, "Mechanically Alloyed Zr-Ti-Cu-Ni Amorphous-alloys with Significant Supercooled Liquid Region," Mater. Lett., Vol. 23 (1995), pp. 299-304.
32. C. K. Lin, C. C. Wang, R. R. Jeng, Y. L. Lin, C. H. Yeh, J. P. Chu, and P. Y. Lee, "Preparation and thermal stability of mechanically alloyed Ni-Zr-Ti-Y amorphous powders," Intermetallics, Vol. 12 (2004), pp. 1011-1017.
33. Z. G. Liu, J. T. Guo, and Z. Q. Hu, "Mechanical alloying and characterization of Ni50Al25Ti25," J. Alloys Compd., Vol. 234 (1996), pp. 106-110.
34. B. S. Murty, M. M. Rao, and S. Ranganathan, "Synthesis of amorphous phase in Ti-Ni-Cu system by mechanical alloying," Scripta Metallurgica Et Materialia, Vol. 24 (1990), pp. 1819-1824.
35. G. M. Dougherty, G. J. Shiflet, and S. J. Poon, "Synthesis and microstructural evolution of Al-Ni-Fe-Gd metallic-glass by mechanical alloying," Acta Metall., Vol. 42 (1994), pp. 2275-2283.
36. K. Krivoroutchko, T. Kulik, H. Matyja, V. K. Portnoy, and V. I. Fadeeva, "Solid state reactions in Ni-Al-Ti-C system by mechanical alloying," J. Alloys Compd., Vol. 308 (2000), pp. 230-236.
37. S. Mula, S. Ghosh, and S. K. Pabi, "Synthesis of an Al-based Al-Cr-Co-Ce alloy by mechanical alloying and its thermal stability," Mater. Sci. Eng., A, Vol. 472 (2008), pp. 208-213.
38. G. Aggen, F. W. Akstens, H. S. Avery, P. Babu, and A. M. Bayer, ASM Handbook Volume 1, 10th ed., ASM International, OH, 1990.
39. R. Nunes, J. H. Adams, M. Ammons, H. S. Avery, and R. J. Barnhurst, ASM Handbook Volume 2, 10th ed., ASM International, OH, 1990.
40. P. J. Blau, R. R. Boyer, K. H. Eckelmeyer, D. D. Huffman, and L. J. Korb, Metals Handbook, Desk ed., ASM International, OH, 1998.
41. J. W. Yeh, S. K. Chen, J. Y. Gan, S. J. Lin, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements," Metall. Mater. Trans. A, Vol. 35A (2004), pp. 2533-2536.
42. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes," Adv. Eng. Mater., Vol. 6 (2004), pp. 299-303.
43. J. W. Yeh, "Recent progress in high-entropy alloys," Ann. Chim. - Sci. Mat., Vol. 31 (2006), pp. 633-648.
44. R. A. Swalin, Thermodynamics of Solids, 2nd ed., John Wiley & Sons, Inc., 1972.
45. T. K. Chen, T. T. Shun, J. W. Yeh, and M. S. Wong, "Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering," Surf. Coat. Technol., Vol. 188-89 (2004), pp. 193-200.
46. C. Y. Hsu, J. W. Yeh, S. K. Chen, and T. T. Shun, "Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition," Metall. Mater. Trans. A, Vol. 35A (2004), pp. 1465-1469.
47. P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, "Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating," Adv. Eng. Mater., Vol. 6 (2004), pp. 74-78.
48. T. K. Chen, M. S. Wong, T. T. Shun, and J. W. Yeh, "Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering," Surf. Coat. Technol., Vol. 200 (2005), pp. 1361-1365.
49. Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh, and H. C. Shih, "Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel," Corros. Sci., Vol. 47 (2005), pp. 2257-2279.
50. Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh, and T. Duval, "Electrochemical kinetics of the high entropy alloys in aqueous environments - a comparison with type 304 stainless steel," Corros. Sci., Vol. 47 (2005), pp. 2679-2699.
51. Y. Y. Chen, U. T. Hong, J. W. Yeh, and H. C. Shih, "Mechanical properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 degrees C high-purity water," Appl. Phys. Lett., Vol. 87 (2005), Article Number: 261918.
52. C. J. Tong, M. R. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, S. J. Lin, and S. Y. Chang, "Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements," Metall. Mater. Trans. A, Vol. 36A (2005), pp. 1263-1271.
53. C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, "Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements," Metall. Mater. Trans. A, Vol. 36A (2005), pp. 881-893.
54. H. Y. Chen, C. W. Tsai, C. C. Tung, J. W. Yeh, T. T. Shun, C. C. Yang, and S. K. Chen, "Effect of the substitution of Co by Mn in Al-Cr-Cu-Fe-Co-Ni high-entropy alloys," Ann. Chim. - Sci. Mat., Vol. 31 (2006), pp. 685-698.
55. M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and M. H. Chuang, "Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al0.5CoCrCuFeNi high-entropy alloy," Metall. Mater. Trans. A, Vol. 37A (2006), pp. 1363-1369.
56. M. R. Chen, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang, and C. P. Tu, "Microstructure and properties of Al0.5CoCrCuFeNiTix (x=0-2.0) high-entropy alloys," Mater. Trans., Vol. 47 (2006), pp. 1395-1401.
57. Y. Y. Chen, U. T. Hong, J. W. Yeh, and H. C. Shih, "Selected corrosion behaviors of a Cu0.5NiAlCoCrFeSi bulk glassy alloy in 288 degrees C high-purity water," Scripta Mater., Vol. 54 (2006), pp. 1997-2001.
58. H. F. Kuo, W. Chin, T. W. Cheng, W. K. Hsu, and J. W. Yeh, "Hyperfine splitting from magnetic boride domains embedded in Fe-Co-Ni-Al-B-Si alloy," Appl. Phys. Lett., Vol. 89 (2006), Article Number: 182503.
59. C. H. Lai, S. J. Lin, J. W. Yeh, and S. Y. Chang, "Preparation and characterization of AlCrTaTiZr multi-element nitride coatings," Surf. Coat. Technol., Vol. 201 (2006), pp. 3275-3280.
60. C. H. Lai, S. J. Lin, J. W. Yeh, and A. Davison, "Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr)N coatings," J. Phys. D - Appl. Phys., Vol. 39 (2006), pp. 4628-4633.
61. Y. Y. Chen, T. Duval, U. T. Hong, J. W. Yeh, H. C. Shih, L. H. Wang, and J. C. Oung, "Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 degrees C high-purity water," Mater. Lett., Vol. 61 (2007), pp. 2692-2696.
62. C. H. Lin, J. G. Duh, and J. W. Yeh, "Multi-component nitride coatings derived from Ti-Al-Cr-Si-V target in RF magnetron sputter," Surf. Coat. Technol., Vol. 201 (2007), pp. 6304-6308.
63. C. C. Tung, J. W. Yeh, T. T. Shun, S. K. Chen, Y. S. Huang, and H. C. Chen, "On the elemental effect of AlCoCrCuFeNi high-entropy alloy system," Mater. Lett., Vol. 61 (2007), pp. 1-5.
64. M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, and J. Y. Gan, "Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization," Appl. Phys. Lett., Vol. 92 (2008), Article Number: 052109.
65. J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, and Y. S. Huang, "Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content," Wear, Vol. 261 (2006), pp. 513-519.
66. D. A. Porter and K. E. Easterling, Phase transformations in metals and alloys, 2 ed., Chapman & Hall, London, 1992.
67. B. Cantor, I. T. H. Chang, P. Knight, and A. J. B. Vincent, "Microstructural development in equiatomic multicomponent alloys," Mater. Sci. Eng., A, Vol. 375 (2004), pp. 213-218.
68. J. W. Yeh, S. Y. Chang, Y. D. Hong, S. K. Chen, and S. J. Lin, "Anomalous decrease in X-ray diffraction intensities of Cu-Ni-Al-Co-Cr-Fe-Si alloy systems with multi-principal elements," Mater. Chem. Phys., Vol. 103 (2007), pp. 41-46.
69. R. Kelsall, I. Hamley, and M. Geoghegan, Nanoscale Science and Technology, ed., John Wiley & sons Ltd., Weat Sussex, England, 2005.
70. C. Politis and W. L. Johnson, "Preparation of amorphous Ti1-XCuX (0.10<x<0.87) by mechanical alloying," J. Appl. Phys., Vol. 60 (1986), pp. 1147-1151.
71. J. Eckert, "Mechanical alloying of highly processable glassy alloys," Mater. Sci. Eng., A, Vol. 226 (1997), pp. 364-373.
72. M. S. El-Eskandarany, J. Saida, and A. Inoue, "Room-temperature mechanically induced solid-state devitrifications of glassy Zr65Al7.5Ni10Cu12.5Pd5 alloy powders," Acta Mater., Vol. 51 (2003), pp. 4519-4532.
73. B. S. Murty, M. M. Rao, and S. Ranganathan, "Differences in the glass-forming ability of rapidly solidified and mechanically alloyed Ti-Ni-Cu alloys," Mater. Sci. Eng., A, Vol. 196 (1995), pp. 237-241.
74. M. Seidel, J. Eckert, and L. Schultz, "Formation of amorphous Zr-Al-Cu-Ni with a large supercooled liquid region mechanical alloying," J. Appl. Phys., Vol. 77 (1995), pp. 5446-5448.
75. M. Seidel, J. Eckert, I. Bacher, M. Reibold, and L. Schultz, "Progress of solid-state reaction and class formation in mechanically alloyed Zr65Al7.5Cu17.5Ni10," Acta Mater., Vol. 48 (2000), pp. 3657-3670.
76. S. Varalakshmi, M. Kamaraj, and B. S. Murty, "Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying," J. Alloys Compd., Vol. 460 (2008), pp. 253-257.
77. K. H. Cheng, C. H. Lai, S. J. Lin, and J. W. Yeh, "Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets," Ann. Chim. - Sci. Mat., Vol. 31 (2006), pp. 723-736.
78. A. L. Greer, "Materials science - confusion by design," Nature, Vol. 366 (1993), pp. 303-304.
79. X. F. Wang, Y. Zhang, Y. Qiao, and G. L. Chen, "Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys," Intermetallics, Vol. 15 (2007), pp. 357-362.
80. Y. J. Zhou, Y. Zhang, Y. L. Wang, and G. L. Chen, "Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties," Appl. Phys. Lett., Vol. 90 (2007), Article Number: 181904.
81. J. Dutkiewicz, L. Jaworska, W. Maziarz, T. Czeppe, M. Lejkowska, A. Kubicek, and M. Pastrnak, "Consolidation of amorphous ball-milled Zr-Cu-Al and Zr-Ni-Ti-Cu powders," J. Alloys Compd., Vol. 434 (2007), pp. 333-335.
82. C. K. Lin, S. W. Liu, and P. Y. Lee, "Preparation and thermal stability of Zr-Ti-Al-Ni-Cu amorphous powders by mechanical alloying technique," Metall. Mater. Trans. A, Vol. 32 (2001), pp. 1777-1786.
83. Y. L. Chen, Y. H. Hu, C. W. Tsai, C. A. Hsieh, S. W. Kao, J. W. Yeh, T. S. Chin, and S. K. Chen, "Alloying behavior of binary to octonary alloys based on Cu–Ni–Al–Co–Cr–Fe–Ti–Mo during mechanical alloying," J. Alloys Compd., Vol. 477 (2009), pp. 696-705.
84. Y. T. Cheng, W. L. Johnson, and M. A. Nicolet, "Dominant moving species in the formation of amorphous NiZr by solid-state reaction," Appl. Phys. Lett., Vol. 47 (1985), pp. 800-802.
85. C. Kittel, Introduction to Solid State Physics, 7th ed., John Wiley & Sons, Inc., New York, 1996.
86. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metals, 1st ed., Elsevier Scientific Pub. Co., New York, 1988.
87. A. Takeuchi and A. Inoue, "Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys," Mater. Trans., JIM, Vol. 41 (2000), pp. 1372-1378.
88. C. C. Koch, "Synthesis of nanostructured materials by mechanical milling: Problems and opportunities," Nanostruct. Mater., Vol. 9 (1997), pp. 13-22.
89. A. Peker and W. L. Johnson, "A highly processable metallic-glass - Zr41.2Ti13.8Cu12.5Ni10.0Be22.5," Appl. Phys. Lett., Vol. 63 (1993), pp. 2342-2344.
90. A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys," Acta Mater., Vol. 48 (2000), pp. 279-306.
91. W. H. Wang, C. Dong, and C. H. Shek, "Bulk metallic glasses," Mater. Sci. Eng., R, Vol. 44 (2004), pp. 45-89.
92. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, "Solid-solution phase formation rules for multi-component alloys," Adv. Eng. Mater., Vol. 10 (2008), pp. 534-538.
93. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison-Wesley Publishing Company, Inc., 1978.
94. G. Y. Ke, S. K. Chen, T. Hsu, and J. W. Yeh, "FCC and BCC equivalents in as-cast solid solutions of AlxCoyCrzCu0.5FevNiw high-entropy alloys," Ann. Chim. - Sci. Mat., Vol. 31 (2006), pp. 669-683.
95. T. R. Chueva, N. P. Dyakonova, V. V. Molokanov, and T. A. Sviridova, "Bulk amorphous alloy Fe72Al5Ga2C6B4P10Si1 produced by mechanical alloying," J. Alloys Compd., Vol. 434 (2007), pp. 327-332.
96. D. Oleszak and T. Kulik, "Ni59Zr20Ti16Sn5 amorphous alloy obtained by melt spinning and mechanical alloying," J. Non-Cryst. Solids, Vol. 353 (2007), pp. 845-847.
97. A. Inoue, T. Zhang, and T. Masumoto, "Glass-Forming Ability of Alloys," J. Non-Cryst. Solids, Vol. 156 (1993), pp. 473-480.
98. B. S. Rao, J. Bhatt, and B. S. Murty, "Identification of compositions with highest glass forming ability in multicomponent systems by thermodynamic and topological approaches," Mater. Sci. Eng., A, Vol. 449 (2007), pp. 211-214.
99. I. K. Jeng, C. K. Lin, and P. Y. Lee, "Formation and characterization of mechanically alloyed Ti-Cu-Ni-Sn bulk metallic glass composites," Intermetallics, Vol. 14 (2006), pp. 957-961.
100. P. Y. Lee, C. Lo, and J. S. C. Jang, "Consolidation of mechanically alloyed Mg49Y15Cu36 powders by vacuum hot pressing," J. Alloys Compd., Vol. 434 (2007), pp. 354-357.
101. F. E. Luborsky, Amorphous metallic alloys, in: Amorphous metallic alloys, Butterworths, London, 1983, pp. 144-168.
102. D. Turnbull, "Gram-atomic volumes of metal-metalloid glass forming alloys," Scripta Metallurgica, Vol. 11 (1977), pp. 1131-1136.
103. D. Turnbull, "Metastable structures in metallurgy," Metall. Trans. B, Vol. 12 (1981), pp. 217-230.
104. T. Egami, "The atomic structure of aluminum based metallic glasses and universal criterion for glass formation," J. Non-Cryst. Solids, Vol. 207 (1996), pp. 575-582.
105. T. Egami, "Universal criterion for metallic glass formation," Mater. Sci. Eng., A, Vol. 226 (1997), pp. 261-267.
106. T. Egami and Y. Waseda, "Atomic Size Effect on the Formability of Metallic Glasses," J. Non-Cryst. Solids, Vol. 64 (1984), pp. 113-134.
107. C. Massobrio and V. Pontikis, "Percolation model for elastic softening in intermetallic compounds during solid-state amorphization," Phys. Rev. B: Condens. Matter, Vol. 45 (1992), p. 2484.
108. C. Massobrio, V. Pontikis, and G. Martin, "Amorphization induced by chemical disorder in crystalline NiZr2: A molecular-dynamics study based on an n-body potential," Phys. Rev. Lett., Vol. 62 (1989), p. 1142.
109. A. Takeuchi and A. Inoue, "Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element," Mater. Trans., Vol. 46 (2005), pp. 2817-2829.
110. D. A. Porter and K. E. Easterling, in: Phase transformations in metals and alloys, Chapman & Hall, London, 1992, pp. 75-91.