研究生: |
洪郁荃 Hung, Yu-Chuan |
---|---|
論文名稱: |
燃料護套鋯水反應之CFD模式發展與應用研究 Development Application Study CFD Model on Zirconium-Water Reaction of Fuel cladding |
指導教授: |
馮玉明
Ferng, Yuh-Ming 林志宏 Lin, Chih-Hung |
口試委員: |
白寶實
Pei, Bau-Shei 曾永信 Tseng, Yung-Shin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 鋯水反應 、CFD核能安全分析 、燃料管束 、計算流體力學 、不準度分析 |
外文關鍵詞: | Zircaloy/steam reaction, Rod bundles, CFD, Uncertainty analysis, LOCA |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
2011年三月福島核能事故發生嚴重氫爆,使核子事故嚴重性加劇。其爆炸之氫氣來源即為在冷卻水流失事故發生時,燃料棒表面鋯與水進行鋯水反應作用,產生大量氫氣及熱能。故鋯水反應之相關現象探討,成為近幾年來核能安全分析之重要計算案例。然而,在國際上,利用CFD進行鋯水反應現象分析之文獻參考並不常見,如何建立有系統的計算模式,即為本文章之研究重點。
然而,進行鋯水反應現象分析之前,燃料棒周遭流場預測之準確度亦為分析之重點。其因為周遭流場對於氫氣之分布有極大影響,且周遭流場之熱點位置亦與意外事故發生時之起火點息息相關。故本研究之分析流程前期目標為燃料棒周遭流場之模型建立研究,而後加入鋯水反應模式,進行燃料護套鋯水反應現象之熱通量計算及氫氣產生量預測。以期能建立CFD分析冷卻水流失事故(Loss-of-coolane-accident, LOCA)發生,引發鋯水反應時之安全評估審查導則基礎之先期研究。
Traditional safety analysis for nuclear power plants (NPPs) with system codes with more conservative assumptions to ensure the plant safety. However, it would scarify the operation flexibility and efficiency. On the other hand, system codes could not analyze local phenomenon in the NPPs. Therefore, Computational Fluid Dynamics (CFD) is gradually adopted in the nuclear safety analysis.
Oxidation of a Zircaloy cladding exposed to high-temperature steam is an important phenomenon in the safety analysis during a loss-of-coolant accident (LOCA), since a Zircaloy/steam reaction is highly exothermic and results in hydrogen production that may cause serious accident. Consequently, the development of CFD Model for the zirconium-water reaction of fuel cladding is quite essential.
In this paper, the CFD predictions of a temperature rise and hydrogen production due to Zircaloy/steam oxidation were compared with the results of the CFX-10 simulations. From these validation processes, it is shown that the analysis process of Zircaloy/steam reaction was built.
1. International Atomic Energy Agency, Use of computational fluid dynamics codes for safety analysis of nuclear reactor systems, IAEA-TECDOC- 1379, 2003.
2. Nuclear Energy Agency, “Assessment of Computational Fluid Dynamics (CFD) for Nuclear Reactor Safety Problems”, NEA/CSNI/R(2007)13, 2008.
3. Nuclear Energy Agency, “Best Practice Guidelines for the use of CFD in nuclear Reactor Safety Applications”, NEA/CSNI/R(2007)5, 2007.
4. The American Society of Mechanical Engineers, “Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer”, ASME V&V 20-2009, 2009.
5. M.V. Holloway, H.L. McClusky, D.E. Beasley, “The Effect of Support Grid Features on Local, Single-Phase Heat Transfer Measurements in Rod Bundles”, Journal of Heat Transfer, Volume 126, 2004, pp.43-53.
6. Chih-Hung Lin , Cheng-Han Yen, Yuh-Ming Ferng, “CFD investigating the flow characteristics in a triangular-pitch rod bundle using Reynolds stress turbulence model” , Annals of Nuclear Energy 65, 2014, pp.357-364
7. United States Nuclear Regulatory Commission, ―Computational Fluid Dynamics Best Practice Guidelines for Dry Cask Applications- Final Report‖, NUREG-2152(2013), 2013.
8. K. Podila, Y.F. Rao, M. Krause, J. Bailey Lefante et.al , “A CFD simulation of 5x5 rod bundles with split-type spacers”
9. Seok-Kyu Chang, Seok Kim, Chul-Hwa Song , “Turbulent mixing in a rod bundle with vaned spacer grids:OECD/NEA–KAERI CFD benchmark exercise test”, Nuclear Engineering and Design, Volume 279,2014,pp. 19–36
10. Lifante, B. Krull, Th. Frank, R. Franzb, U. Hampel, “3 × 3 rod bundle investigations, CFD single-phase numericalsimulationsC.”, Nuclear Wnginnering and Design, Volume279, 2014, pp. 60-72.
11. Lei Yang , Wenzhen Chen , Lei Luo , Xinwen Zhao , “Calculation of radiation heat transfer view factors among fuel rod bundles based on CFD method.” , Annals of Nuclear Energy, Volume 71,2014, pp.462–466.
12. J.M. Mart´ın-Valdepe˜nas, M.A. Jim´enez, F. Mart´ın-Fuertes, J.A. Fern´andez, “Improvements in a CFD code for analysis of hydrogen behaviour within containments.” , Nuclear Engineering and Design, Volume 237, 2007, pp.627-647
13. Hyoung Tae KIM, Bo Wook RHEE & Joo Hwan PARK, “Application of Zircaloy/Steam Oxidation Model to a CFd code and its Validation against a CANDU Fuel Channel Experient: CS28-2” , Journal of Nuclear Science and Tecnology, Volume 44, 2007, pp. 1385-1394.
14. Yifan Nie, Wei Xiao, “Chemical and physical adsorption of a H2O molecule on a metal doped Zr(0001) surface,” Journal of Nuclear Materials ,Volume 452, 2014, pp. 493-499
15. Dong Jun Park, Hyun Gil Kim, Yang Il Jung, Jung Hwan Park, Jae Ho Yang, Yang Hyun Koo, “Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions,” Journal of Nuclear Materials, Volume 482, 2016, pp.75-82
16. Steven C. Johnson, Robert E. Henry, and Chan Y. Paik, “Severe Accident Modeling of a PWR Core with Different Cladding Materials,” Proceedings of ICAPP, Paper 12175, 2012
17. Xiaoli Wu, Wei Li, Yapei Zhang, Wenxi Tian, Guanghui Su, Suizheng Qiu, “Analysis of accidental loss of pool coolant due to leakage in a PWR SFP,” Annals of Nuclear Energy,Volume 77, 2015, pp.65-73
18. Chien-Chung Liu, Yuh-Ming Ferng , Chunkuan Shih , “Numerically simulating the thermal–hydraulic characteristics within the fuel rod bundle using CFD methodology. ”
19. Taro Kato, Ikuji Takagi, Kan Sakamoto, Masaki Aomi , “Hydrogen diffusivity in oxide layers formed in Zr alloy in air or steam” Journal of Nuclear Materials
20. Tapan K. Sawarn , Suparna Banerjee, Akanksha Samanta, B.N. Rath, Sunil Kumar, “Study of oxide and a-Zr(O) growth kinetics from high temperature steam oxidation of Zircaloy-4 cladding” Journal of Nuclear Materials, Volume467, 2015, pp.820-831
21. V. F. Urbanic, T. R. Heidrick, “High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam,” Journal of Nuclear Materials, Volume 75, 1978, pp.251-261.
22. L. Baker, L. C. Just, “Studies of metal-water reactions at high temperatures, III: Experimental and theoretical studies of the zirconium-water reaction,” ANL-6548, ANL, 1962.
23. Cathcart, J. V. Pawel et al., “Zirconium metal-water oxidation kinetics, IV: reaction rate studies, ” ORNL/NUREG-17, ORNL, 1977
24. S. Leistikow, G. Schanz, “Oxidation kinetics and related phenomena of Zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions,” Nuclear Engineering and Design, Volume 103, 1987, pp.65-84
25. Yifan Nie, Wei Xiao, “Chemical and physical adsorption of a H2O molecule on a metal doped Zr(0001) surface,” Journal of Nuclear Materials ,Volume 452, 2014, pp. 493-499