簡易檢索 / 詳目顯示

研究生: 張兆秋
Chang,Chao-Chiu
論文名稱: 鰭片底面裝置針狀電極之EHD增強散熱技術研究
EHD Enhanced Heat Transfer by Inserting Needle Electrodes into Heat Sink
指導教授: 許文震
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 73
中文關鍵詞: 電液動力學電暈風熱對流係數增強
外文關鍵詞: electrohydrodynamics, corona wind, enhanced convection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無法使用動件的散熱系統中,被動式的自然對流散熱能力已不敷使用,因此本研究主要是探討使用無動件的EHD (electrohydrodynamics)技術來改善自然對流下的散熱能力,將電極嵌入至鰭片內,以EHD所產生的電暈風搭配鰭片因溫差所產生的浮力,來加強鰭片的散熱能力。在本文中探討的參數有電場極性、電極與鰭片間距、鰭狀物高度、鰭狀物幾何形狀、鰭狀物相互間的距離與電極排列位置,負電暈的火花放電電壓較高電暈風強度較強,因此無論何種條件下散熱效果均優於正電暈。 EHD技術屬於強制對流因此在鰭片設計上,有效的增加散熱面積反而能降低對流熱阻。在本實驗中,鰭狀物高度1cm時,EHD可有效的擾動降低對流熱阻,熱對流係數最高可增強至自然對流下的3.5倍,而對流熱阻最低可降低至自然對流下的一半,此外,將電極嵌入至鰭片內可大幅降低消耗瓦數,提升散熱效率。


    It is not suitable for the rate of heat transfer under natural convection in some situations which can not utilize active cooling technology, so heat transfer enhanced by electrohydrodynamics (EHD) is experimentally investigated in this work. The system of inserting needle electrodes into heat sink can effectively increase the rate of heat transfer due to the corona wind generated by EHD. The polarity of electric field, distance of electrode to pin-fin, height of pin-fin, configuration of pin-fin, spread of pin-fin and position of electrode will be taken into account. The results reveal that both the spark voltage and heat transfer rate for negative corona are better than those for positive one. In pin-fin design, EHD technology belongs to force convection for reducing thermal resistance of convection with increasing area of cooling. When height of pin-fin is one centimeter, EHD can distort flow field reduced thermal resistance of convection. The maximum heat transfer coefficient with EHD is greater than that without EHD by three and half times. The minimum thermal resistance of convection with EHD is lower than that without EHD by half times. In addition to, inserting needle electrodes into heat sink is not only reduced power consumption but also improved efficiency.

    摘要 I Abstract II 誌謝 IIII 目錄 IV 圖目錄 VII 第一章 序論 1 1-1 前言 1 1-2 文獻回顧 3 1-2-1 EHD散熱應用之文獻回顧 3 1-2-2 EHD溼度影響之文獻回顧 9 第二章 EHD原理簡介 12 2-1 EHD作用原理 12 2-1-1 正電暈的離子運動行為【20】【21】13 2-1-2 負電暈的離子運動行為【20】【21】14 2-2 EHD統馭方程式 16 2-3 粒子間的碰撞行為【25】18 第三章 實驗規劃與分析方法 22 3-1實驗設備與校正 22 3-1-1實驗規劃 22 3-1-2實驗設備 23 3-1-3 熱電偶校正 24 3-1-4 熱通量計校正 25 3-1-5 實驗分析方法 26 3-1-6 自然對流校正 31 3-2 實驗設計 32 3-3 EHD實驗參數設定 34 第四章 實驗結果與討論 51 4-1 電壓對熱傳的影響 51 4-2 電場極性對熱傳的影響 52 4-3 電極與鰭片的間距對熱傳的影響 53 4-4 加熱瓦數對熱傳的影響 54 4-5 鰭片高度對熱傳的影響 55 4-6 鰭片幾何形狀對熱傳的影響 56 4-7 不同鰭狀物間距對熱傳的影響 57 4-8 電極排列對熱傳的影響 58 第五章 結論與未來發展 68 5-1 結論 68 5-2 未來發展方向 69 第六章 參考文獻 70

    1.范盛然, “低溫環境下鰭片結霜研究,” 碩士論文, 動力機械工程學系, 國立清華大學 (2003).
    2.Robinson, M., “Movement of Air in the Electric Wind of the Corona Discharge,” Transactions of the American Institute of Electrical Engineers, V. 80, pp. 143-150 (1961).
    3.Steven C. Goheen, Kari Gaither, Shantha M. Anantatmula, Gary M. Mong, Lyle B. Sasser, and Delbert Lessor, “Corona Discharge Influences Ozone Concentrations Near Rats,” Bioelectromagnetics, V. 25, pp. 107-113 (2004).
    4.Hauksbee, F., “Physico-Mechnical Experiments on Various Subjects,” 1st ed., London, pp. 46-47 (1719).
    5.O’Brien, R. J. and A. J. Shine, “Some Effects of an Electric Field on Heat Transfer From a Vertical Plate in Free Convection,” Journal of Heat Transfer, V. 89, pp. 114-116 (1967).
    6.Kibler, K. G. and H. G. Carter Jr, “Electrocooling in gases,” Journal of Applied Physics, V. 45, No. 10, pp. 4436-4440 (1974).
    7.Mitchell, A. S. and L. E. Williams, “Heat Transfer by the Corona Wind Impinging on a Plate Surface,” Journal of Electrostatics, V. 5, pp. 309-324 (1978).
    8.Owsenek, B. L., J. Seyed-Yagoobi and R. H. Page, “Experimental Investigation of Corona Wind Heat Transfer Enhancement with a Heated Horizontal Flat Plate,” Journal of Heat Transfer, V. 119, pp. 309-315 (1995).
    9.Owsenek, B. L. and J. Seyed-Yagoobi, “Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement through Wire-Plate Corona Discharge,” Journal of Heat Transfer, V. 119, pp. 604-610 (1997).
    10.黃政德, “以EHD技術增加LED散熱效率之研究,” 碩士論文, 動力機械工程學系, 國立清華大學 (2004).
    11.Bhattacharyya, S. and A. Peterson, “Corona Wind-Augmented Natural Convection – Part 1: Single Electrode Studies,” Journal of Enhancement Heat Transfer, V. 9, pp. 209-219 (2002).
    12.Zhao, L. and K. Adamiak, “EHD flow in air produced by electric corona discharge in pin-plate configuration,” Journal of Electrostatics, V. 63, pp. 337-350 (2005).
    13.Chang, J. S., P. A. Lawless and T. Yamamoto, “Corona Discharge Processes,” IEEE Transactions on Plasma Science, V.19, N.6, pp.1152-1166 (1991).
    14.Lowke , J. J. and R. Morrow, “Theory of electric corona including the role of plasma chemistry,” Pure and Applied Chemistry, V.66, N.6, pp.1287-1294 (1991)
    15.Chang, J. S. and I. Maezono, “The electrode surface temperature profile in a corona discharge,” Journal of Physics D: Applied Physics, V.21, pp.1023-1024 (1988)
    16.Boutlendj N. L., Allen, H. A. Lightfoot and R. B. Neville, “Positive DC corona and sparkover in short and long rod-plane gaps under variable humidity conditions,” IEE Proceedings-A, V. 138, No. 1, pp. 31-36 (1991).
    17.Calva P. A. and F. P. Espino C., “Effect of the humidity in the ionic mobility in reduced air-density,” IEEE , pp. 508-511 (1998).
    18.Luc Léger, Eric Moreau, and Gérard G. Touchard, “Effect of a DC Corona Electrical Discharge on the Airflow Along a Flat Plate,” IEEE Transaction on Industry Applications, V. 38, No. 6, pp. 1478-1485 (2002).
    19.Jones, J. E., J. Dupuy, G. O. S. Schreiber, and R. T. Waters, “Boundary conditions for the positive direct-current corona in a coaxial system,” Journal of Physics D: Applied Physics, V.21, pp.322-333 (1988)
    20.李幸勇, “陣列式針狀電極應用於EHD熱傳增強技術,” 碩士論文,動力機械工程學系, 國立清華大學 (2005).
    21.Junhong, C., “Direct-Current Corona Enhanced Chemical Reactions”, Phd Thesis, University of Minnesota, USA, (August 2002).
    22.Abdel-Salam, M. and H. Singer, “Onset voltage of fore and back coronas in point-plane gaps,” Journal of Physics D: Applied Physics, V.24, pp.2000-2007 (1991)
    23.Evans, R. W. and I. I. Inculet, “The Radius of the Visible Ionization Layer for Positive and Negative Coronas,” IEEE Transactions on Industry Applications, V. IA-14, No. 6, pp. 523-525 (1978).
    24.Nelson, D. A. and E. J. Shaughnessy, “Electric Field Effects on Natural Convection in Enclosures,” ASME Journal of Heat Transfer, V. 108, pp. 749-754 (1986).
    25.Chapman, B., “Glow discharge processes :/sputtering and plasma etching /,” Wiley, New York (1980).
    26.Hung, R. T., W. J. Sheu and C. C. Wang, “Natural Convection Heat Transfer from Square pin-fin and plate-fin Heat Sinks Subject to the Influence of Orientation,” 13th International Heat Transfer Conference, NCV-31.
    27.Zografos, A. I. and J. E. Sunderland, “Natural Convection from Pin Fin Arrays,” Experimental Thermal and Fluid Science, V.3, pp.440-449 (1990)
    28.Bosworth, R. L. C., “Heat Transfer Phenomena,” John Wiley, New York (1952).
    29.Fishenden, M. and O. A. Saunders, “An Introduction to Heat Transfer,” Clarendon Press, Oxford, pp.89-90 (1950).
    30.Radiziemska, E. and W. M. Lewandowski, “The Effect of Plate Size on the National Convective Heat Transfer Intensity of Horizontal Surfaces,” Heat Transfer Engineering, V.26, pp.50-53 (2005).
    31.Al-Arabi, M. and M. K. El-Riedy, “Natural Convection Heat Transfer From Isothermal Horizontal Plates of Different Shapes,” International Journal of Heat and Mass Transfer, V.19, pp.1399-1404 (1974) .
    32.Bejan, A., “Convection Heat Transfer ,” Third Edition, John Wiley, New York (2004).
    33.Yue, Y., J. Hou, Z. Ai, L. Yang, and Q. Zhang, “Experimental Studies of the Enhanced Heat Transfer from a Heating Vertical Flat Plate by Ionic Wind,” Plasma Science and Technology, V. 8, No. 6, pp. 697-700 (2006).
    34.Raizer, Y. P., “Gas Discharge Physics,” Springer-Verlag (1991).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE