研究生: |
沈昇鴻 Shen, Sheng Hung |
---|---|
論文名稱: |
標準SiGe BiCMOS製程中實現高響應度及高速光偵測電晶體 High-Responsivity and High-Speed Phototransistors in Standard SiGe BiCMOS Technology |
指導教授: |
徐永珍
Hsu, Yung Jane |
口試委員: |
賴宇紳
LAI, YU SHEN 郭明清 KUO, MING CHING |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 光電晶體 、自给偏壓 、BiCMOS製程 、單光子崩潰二極體 |
外文關鍵詞: | Phototransistor, Self-Bias, BiCMOS, SPAD |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年隨著CMOS影像感測器技術發展,光偵測器的效能與製作日益受到重視,而為降低製作成本且便於與電路整合,在標準製程限制條件下設計高響應度及高速的光偵測器成為本論文所追求的目標。
本論文所討論的光偵測器以利用TSMC 0.18μm SiGe BiCMOS製程所實現的異質接面雙載子光電晶體(Heterojunction phototransistor,HPT)為主,由操作方式不同可分為兩部分,第一部分為HPT with body-strapping,利用所提出新的理論Body-strapping,將光電晶體的Base端與Body端相接,使光子於Substrate裡產生的載子導入Base中,進一步大幅提升SiGe HPT的響應度,且藉由模擬軟體發現載子確實由Body導入Base中,證實Body-strapping的理論。最後由量測發現HPT with body-strapping雖有良好的響應度但響應速度較慢,60μmx60μm大小的元件其Rise time為6μs,Fall time為8μs,本論文為此進一步提出改良的方法。
第二部分為單光子崩潰電晶體(Single Photon Avalanche Transistor, SPAT),將HPT操作在Geiger模式,利用光電晶體擁有較低的崩潰電壓特性,達到極低操作電壓的單光子崩潰光偵測器,但實際量測發現HPT擁有遲滯現象使其崩潰電流被鎖住而無法利用,但藉由HPT的Base與一MOSFET相連而打破遲滯現象,可達到單光子崩潰光偵測器的特性。
Along with the improvement of CMOS image sensor technology, response and process of photodetector has drawn more attention gradually. This thesis attempts to design high-responsivity and high-speed photodetectors under the standard process restrictions.
This thesis is based on the photodetector, namely heterojunction phototransistor (HPT), fabricated in TSMC 0.18μm SiGe BiCMOS technology. This thesis can be divided into two parts with different operation modes. One is the design of the HPT with the theory of body-strapping. By connecting the base terminal to body terminal in HPT, the photo-generated carriers in the substrate are used to diffuse to the base and to enhance the response of the phototransistor. The theory is verified by confirming the flow direction of the photo-generated carriers with device simulation. Measurement also shows that the HPT with body-strapping has high responsivity but poor speed. Rise time and fall time of the HPT with body-strapping is 6μs and 8μs, repectively, for a 60 m x 60 m device. Therefore, we propose some improvement for the speed performance.
The other part of the thesis is the design of Single Photon Avalanche Transistor (SPAT). Whenever a transistor operates under the Geiger mode, we consider it as SPAT. Since a phototransistor has low open-base breakdown voltage (BVceo), SPAT may work at extremely low operating voltage. Measurement shows that directly making our HPT as a SPAT is not feasible because the breakdown current has been latched due the effect of breakdown hysteresis occurred in the HPT. However, connecting the base terminal of the SPAT with a MOSFET can break the limit made by hysteresis effect and can make the SPAT functional.
[1] S. M. Sze, Physics of Semiconductor Devices, 2rd ed. John Wiley & Sons; 1981.
[2] Jiann S. Yuan, “SiGe, GaAs, and InP Heterojunction Bipolar Transistors.”, John
Wiley and Sons, Inc. 1999
[3] http://www.tf.uni-kiel.de/matwis/amat/semi_en/kap_5/backbone/r5_2_2.html
[4] K. Y. Hsu and B. W. Liao, "High responsivity phototransistor with body-strapped base in standard SiGe BiCMOS technology," in Electron Devices and Solid-State
Circuits (EDSSC), 2013 IEEE International Conference of,
[5] 許方則,標準CMOS製程之低暗計數單光子崩潰二極體,碩士論文,交通大學,新竹,2012
[6] G. F. Dalla Betta, Advances in photodiodes : InTech, (2011).
[7] H.T.Yen, “ InGaAs Avalanche Photodiode for Single-Photon-Detector
[8] D. Harame, L. Larson, M. Case, S. Kovacic, S. Voinigescu, T. Tewksbury, et al.,"SiGe HBT technology: Device and application issues," in Electron Devices Meeting, 1995. IEDM'95., International, 1995, pp. 731-734.
[9] 廖偉傑,“標準製程下應用於整合型光通訊接收器之光偵測器元
件與訊號放大電路設計,國立清華大學,電子工程研究所,碩士
論文,中華民國一百零一年七月
[10] J.-W. Han and M. Meyyappan, "Trigger and Self-Latch Mechanisms of npn Bistable Resistor," Electron Device Letters, IEEE, vol. 35, pp. 387-389, 2014.
[11] K.-S. Lai, J.-C. Huang, and K. Y.-J. Hsu, “High responsivity photodetector in standard SiGe BiCMOS technology”, IEEE Electron Device Letters, vol. 28, pp.
800-802, 2007.
[12] W. Shockley, M. Sparks, and G. K. Teal, “p-n junction transistor”, Physics Review, vol. 83, pp. 151-164, 1951.
[13] T. Yin, A. M. Pappu, and A. B. Apsel, “Low-cost, high-efficiency, and high-speed SiGe phototransistors in commercial BiCMOS”, IEEE Photonics
Technology Letters, vol. 18, no. 1, pp. 55-57, January, 2006.
[14] J. L. Polleux, F. Moutier, A. L. Billabert, C. Rumelhard, E. Soenmez, and H. Schumacher, “A strained SiGe layer heterojunction bipolar phototransistor for short-range opto-microwave applications”, Proceedings International Topical Meeting on Microwave Photonics, pp. 113-116, September, 2003.
[15] Z. Pei, C. S. Liang, L. S. Lai, Y. T. Tseng, Y. M. Hsu, P. S. Chen, S. C. Lu, M.-J.
Tsai and C. W. Liu, “A High-Performance SiGe-Si Multiple-Quantum-Well
Heterojunction Phototransistors”, IEEE Electron Device Letters, vol. 24, no. 10, pp. 643-645, October, 2003.
[16] 林威成,“標準SiGe BiCMOS製成中光偵測器結構之研究”,國立清華大學,電子工程研究所,碩士論文,中華民國一百年六月
[17] M. Ramonas, C. Jungemann, P. Sakalas, M. Schröter, and W. Kraus, "Microscopic modeling of impact-ionization noise in SiGe heterojunction bipolar transistors," in SPIE Fourth International Symposium on Fluctuations and Noise, 2007, pp. 66001F-66001F-12.
[18] M. Reisch, "On bistable behavior and open-base breakdown of bipolar transistors in the avalanche regime-modeling and applications," Electron Devices, IEEE Transactions on, vol. 39, pp. 1398-1409, 1992.
[19] M. M. Hayat, M. A. Itzler, D. A. Ramirez, and G. J. Rees, "Model for passive quenching of SPADs," in OPTO, 2010, pp. 76082B-76082B-8.
[20] B. Krabbenborg, H. de Graaff, and A. Mouthaan, "Analytical calculation of avalanche and thermal snapback points in bipolar transistors," in ESSDERC'94: 24th European Solid State Device Research Conference, 1994.
[21] V. Savuskan, M. Javitt, G. Visokolov, I. Brouk, and Y. Nemirovsky, "Selecting single photon avalanche diode (SPAD) passive-quenching resistance: An approach," Sensors Journal, IEEE, vol. 13, pp. 2322-2328, 2013.
[22] M. A. Karami, M. Gersbach, H.-J. Yoon, and E. Charbon, "A new single-photon avalanche diode in 90nm standard CMOS technology," Optics Express, vol. 18, pp. 22158-22166, 2010.